[1] 朱法华. 燃煤电厂烟气污染物超低排放技术路线的选择[J]. 中国电力,2017,50(3):11-16. ZHU Fahua. Methodologies on choosing appropriate technical route for ultra low emission of flue gas pollutants from coal-fired power plants [J]. Electric Power, 2017, 50(3): 11-16. [2] 黄茹,马德彭,莫华,等. 基于CFB-FGD技术的烟气超低排放工程性能测试评估[J]. 中国电力,2017,50(3):17-21. HUANG Ru, MA Depeng, MO Hua, et al . Testing and assessment on performance of flue gas ultra low emission based on CFB-FGD technology [J]. Electric Power, 2017, 50(3): 17-21. [3] 曾令可,牛艳鸽,刘涛,等. 湿法烟气脱硫除尘一体化技术[J]. 中国陶瓷工业,2009,16(1):39-41. ZENG Lingke, NIU Yange, LIU Tao, et al . The integrated wet flue gas desulfurization and dust separation technology [J]. China Ceramic Industry, 2009, 16(1): 39-41. [4] 霍利民,朱永利,范高峰,等. 一种基于贝叶斯网络的电力系统可靠性评估新方法[J]. 电力系统自动化,2003,27(5):36-40. HUO Limin, ZHU Yongli, FAN Gaofeng, et al . A new method for reliability assessment of power system based on Bayeslan networks[J]. Automation of Electric Power Systems, 2003, 27(5): 36-40. [5] 冯金煌,陈活虎. 脱硫喷淋塔除尘的影响因素及效果分析[J]. 环境工程,2010,28(3):70-84. FENG Jinhuang, CHEN Huohu. Analysis of dedusting influencing factors and effect of sprayer in desulphurization system[J]. Environmental Engineering, 2010, 28(3): 70-84. [6] 岳焕玲,原永涛,宏哲. 石灰石-石膏湿法烟气脱硫喷淋塔除尘机理分析[J]. 电力环境保护,2006,22(6):13-15. YU Huanling, YUAN Yongtao, HONG Zhe. Analysis of dust removal mechanism in sprayer of limestone/gypsum wet flue gas desulfurization system[J]. Electric Power Environmental Protection, 2006, 22(6): 13-15. [7] 夏力伟,张学锁,梁会友,等. 脱硫协同除尘技术在大型火电机组中的应用研究[J]. 中国高新技术企业,2016(12):83-85. [8] DAVID H. A tutorial on learning with Bayesian networks, in learning in graphical [M]. Cambridges MIT Press: 1997. [9] MURPHY K. A brief introduction to graphical models and Bayesian networks [EB/OL]. [2017-01-05]. http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html. [10] 郑慧萌,刘卫东,肖承地,等. 基于贝叶斯网络的硬件产品设计缺陷评估[J]. 计算机工程与应用,2016,52(19):228-233. ZHENG Huimeng, LIU Weidong, XIAO Chengdi, et al . Assessment of hardware product design defects using Bayesian networks[J]. Computer Engineering and Applications, 2016, 52(19): 228-233. [11] FRIEDMAN N, GOLDSZMIDT M. Learning Bayesian networks with local structure[C]// Proceedings of the 12 th conference on uncertainty in artificial intelligence. Portland, August 1-4, 1996. [12] 张孝远,张新萍,苏保平. 基于最小最大核 K 均值聚类算法的水电机组振动故障诊断[J].电力系统保护与控制,2015,43(5):27-34. ZHANG Xiaoyuan, ZHANG Xinping, SU Baoping. Vibrant fault diagnosis for hydro-turbine generating unit using minmax kernel K-means clustering algorithm[J]. Power System Protection and Control, 2015, 43(5): 27-34. [13] 周志华. 机器学习[M]. 北京:清华大学出版社,2016:198-200. [14] 蔡娜,王俊英,刘惟一. 一种基于小数据集的贝叶斯网络学习方法[J]. 云南大学学报(自然科学版),2007,29(4):359-363. CAI Na, WANG Junying, LIU Weiyi. An approach to learning Bayesian networks from small data set[J]. Journal of Yunnan University(Natural Sciences Edition), 2007, 29(4): 359-363. [15] 王双成,冷翠平,李小琳. 小数据集的贝叶斯网络结构学习[J]. 自动化学报,2009,35(8):1063-1070. WANG Shuangcheng, LENG Cuiping, LI Xiaolin. Learning Bayesian network structure from small data set[J]. Acta Autornatica Sinica, 2009, 35(8): 1063-1070. [16] Ethem Alpaydin. 机器学习导论[M]. 范明,译. 北京:机械工业出版社,2015. |