Electric Power ›› 2025, Vol. 58 ›› Issue (7): 197-206.DOI: 10.11930/j.issn.1004-9649.202411008
• Technology and Economics • Previous Articles Next Articles
TIAN Xin1(
), JIN Xiaoling1(
), HAN Xinyang1(
), YANG Junwei2, ZHANG Xinsheng1
Received:2024-11-01
Online:2025-07-30
Published:2025-07-28
Supported by:TIAN Xin, JIN Xiaoling, HAN Xinyang, YANG Junwei, ZHANG Xinsheng. Evaluation of Grid Investment Effectiveness and Investment Simulation for New-Type Power Systems Based on Machine Learning Algorithm[J]. Electric Power, 2025, 58(7): 197-206.
| 序号 | 一级指标 | 二级指标 | ||
| 1 | 低碳性 | 新能源并网发电量占地区全社会用电量的比例 | ||
| 2 | 终端电气化率 | |||
| 3 | 新能源利用率 | |||
| 4 | 安全性 | 断面输电能力提升 | ||
| 5 | N–1通过率 | |||
| 6 | 地区供电可靠率 | |||
| 7 | 防灾抗灾能力 | |||
| 8 | 经济性 | 网损率 | ||
| 9 | 单位投资增供电量 | |||
| 10 | 单位固定资产售电量 | |||
| 11 | 智能性 | 配电自动化覆盖率 | ||
| 12 | 采集终端覆盖率 | |||
| 13 | 低压分布式光伏用户“四可”能力 |
Table 1 Evaluation system for grid investment effectiveness of new-type power systems
| 序号 | 一级指标 | 二级指标 | ||
| 1 | 低碳性 | 新能源并网发电量占地区全社会用电量的比例 | ||
| 2 | 终端电气化率 | |||
| 3 | 新能源利用率 | |||
| 4 | 安全性 | 断面输电能力提升 | ||
| 5 | N–1通过率 | |||
| 6 | 地区供电可靠率 | |||
| 7 | 防灾抗灾能力 | |||
| 8 | 经济性 | 网损率 | ||
| 9 | 单位投资增供电量 | |||
| 10 | 单位固定资产售电量 | |||
| 11 | 智能性 | 配电自动化覆盖率 | ||
| 12 | 采集终端覆盖率 | |||
| 13 | 低压分布式光伏用户“四可”能力 |
| 场景 | 新增指标 | 所属 维度 | 关键影响因素 | 与电网投资相关性 | ||||
| 分布式电源 | 分布式电源平准化 能源成本 | 经济性 | 运营维护成本 | 负相关 | ||||
| 分布式绿电占比 | 低碳性 | 电源侧灵活 性与稳定性 | 正相关 | |||||
| 分布式电源供电保障能力 | 安全性 | 备用供电和应 急响应能力 | 负相关 | |||||
| 微电网 | 主网投资需求削减能力 | 经济性 | 负荷量与主 网稳定性 | 负相关 | ||||
| 微电网备用容量 | 安全性 | 主网稳定性 | 负相关 | |||||
| 微电网自平衡可靠性 | 安全性 | 负荷量、 负荷成本 | 负相关 | |||||
| 微电网平准化能源成本 | 经济性 | 能源成本 | 负相关 | |||||
| 微电网节能率 | 经济性 | 负荷成本 | 负相关 | |||||
| 微电网孤岛形成失败概率 | 安全性 | 微电网稳定性 | 正相关 | |||||
| 储能 | 储能调峰效益 | 经济性 | 调峰能力 | 负相关 | ||||
| 储能节煤效益 | 低碳性 | 调节能力 | 负相关 | |||||
| 储能电力应急应用 | 安全性 | 应急损失 | 负相关 | |||||
| 储能响应延迟性 | 安全性 | 调节能力 | 正相关 |
Table 2 New indicators for multi-scenario power grid investment effectiveness
| 场景 | 新增指标 | 所属 维度 | 关键影响因素 | 与电网投资相关性 | ||||
| 分布式电源 | 分布式电源平准化 能源成本 | 经济性 | 运营维护成本 | 负相关 | ||||
| 分布式绿电占比 | 低碳性 | 电源侧灵活 性与稳定性 | 正相关 | |||||
| 分布式电源供电保障能力 | 安全性 | 备用供电和应 急响应能力 | 负相关 | |||||
| 微电网 | 主网投资需求削减能力 | 经济性 | 负荷量与主 网稳定性 | 负相关 | ||||
| 微电网备用容量 | 安全性 | 主网稳定性 | 负相关 | |||||
| 微电网自平衡可靠性 | 安全性 | 负荷量、 负荷成本 | 负相关 | |||||
| 微电网平准化能源成本 | 经济性 | 能源成本 | 负相关 | |||||
| 微电网节能率 | 经济性 | 负荷成本 | 负相关 | |||||
| 微电网孤岛形成失败概率 | 安全性 | 微电网稳定性 | 正相关 | |||||
| 储能 | 储能调峰效益 | 经济性 | 调峰能力 | 负相关 | ||||
| 储能节煤效益 | 低碳性 | 调节能力 | 负相关 | |||||
| 储能电力应急应用 | 安全性 | 应急损失 | 负相关 | |||||
| 储能响应延迟性 | 安全性 | 调节能力 | 正相关 |
| 二级指标 | –20% | –10% | 0 | +10% | +20% | |||||
| 新能源并网发电量占地区全社会用电量的比例 | 47.14 | 53.23 | 64.41 | 72.28 | 79.30 | |||||
| 终端电气化率 | 52.05 | 58.90 | 64.41 | 69.11 | 75.47 | |||||
| 新能源利用率 | 50.49 | 56.97 | 64.41 | 66.54 | 72.78 | |||||
| 断面输电能力提升 | 52.50 | 59.18 | 64.41 | 68.83 | 75.43 | |||||
| N–1通过率 | 48.32 | 54.57 | 64.41 | 72.96 | 79.86 | |||||
| 地区供电可靠率 | 47.88 | 53.92 | 64.41 | 71.72 | 78.52 | |||||
| 防灾抗灾能力 | 50.12 | 56.53 | 64.41 | 65.23 | 71.23 | |||||
| 网损率 | 52.25 | 58.93 | 64.41 | 67.78 | 74.13 | |||||
| 单位投资增供电量 | 47.43 | 53.45 | 64.41 | 71.45 | 78.37 | |||||
| 单位固定资产售电量 | 49.28 | 55.53 | 64.41 | 67.00 | 73.18 | |||||
| 配电自动化覆盖率 | 47.37 | 53.56 | 64.41 | 71.96 | 78.80 | |||||
| 采集终端覆盖率 | 49.24 | 55.57 | 64.41 | 68.87 | 75.46 | |||||
| 低压分布式光伏用户 “四可”能力 | 51.58 | 58.12 | 64.41 | 66.14 | 72.24 | |||||
| 主网投资需求削减能力 | 50.90 | 57.35 | 64.41 | 69.29 | 75.75 | |||||
| 微电网备用容量 | 52.33 | 59.17 | 64.41 | 66.46 | 72.70 | |||||
| 微电网自平衡可靠性 | 51.32 | 58.01 | 64.41 | 66.98 | 73.17 | |||||
| 微电网平准化能源成本 | 52.97 | 59.93 | 64.41 | 67.98 | 74.32 | |||||
| 微电网节能率 | 52.60 | 59.46 | 64.41 | 67.14 | 73.47 | |||||
| 微电网孤岛形成失败概率 | 49.73 | 56.27 | 64.41 | 66.79 | 72.95 |
Table 3 Results of sensitivity analysis of indicators
| 二级指标 | –20% | –10% | 0 | +10% | +20% | |||||
| 新能源并网发电量占地区全社会用电量的比例 | 47.14 | 53.23 | 64.41 | 72.28 | 79.30 | |||||
| 终端电气化率 | 52.05 | 58.90 | 64.41 | 69.11 | 75.47 | |||||
| 新能源利用率 | 50.49 | 56.97 | 64.41 | 66.54 | 72.78 | |||||
| 断面输电能力提升 | 52.50 | 59.18 | 64.41 | 68.83 | 75.43 | |||||
| N–1通过率 | 48.32 | 54.57 | 64.41 | 72.96 | 79.86 | |||||
| 地区供电可靠率 | 47.88 | 53.92 | 64.41 | 71.72 | 78.52 | |||||
| 防灾抗灾能力 | 50.12 | 56.53 | 64.41 | 65.23 | 71.23 | |||||
| 网损率 | 52.25 | 58.93 | 64.41 | 67.78 | 74.13 | |||||
| 单位投资增供电量 | 47.43 | 53.45 | 64.41 | 71.45 | 78.37 | |||||
| 单位固定资产售电量 | 49.28 | 55.53 | 64.41 | 67.00 | 73.18 | |||||
| 配电自动化覆盖率 | 47.37 | 53.56 | 64.41 | 71.96 | 78.80 | |||||
| 采集终端覆盖率 | 49.24 | 55.57 | 64.41 | 68.87 | 75.46 | |||||
| 低压分布式光伏用户 “四可”能力 | 51.58 | 58.12 | 64.41 | 66.14 | 72.24 | |||||
| 主网投资需求削减能力 | 50.90 | 57.35 | 64.41 | 69.29 | 75.75 | |||||
| 微电网备用容量 | 52.33 | 59.17 | 64.41 | 66.46 | 72.70 | |||||
| 微电网自平衡可靠性 | 51.32 | 58.01 | 64.41 | 66.98 | 73.17 | |||||
| 微电网平准化能源成本 | 52.97 | 59.93 | 64.41 | 67.98 | 74.32 | |||||
| 微电网节能率 | 52.60 | 59.46 | 64.41 | 67.14 | 73.47 | |||||
| 微电网孤岛形成失败概率 | 49.73 | 56.27 | 64.41 | 66.79 | 72.95 |
| 二级指标 | –20% | –10% | 0 | +10% | +20% | |||||
| 新能源并网发电量占地区全社会用电量的比例 | –26.82 | –17.36 | 0.00 | 12.21 | 23.12 | |||||
| 终端电气化率 | –19.18 | –8.55 | 0.00 | 7.29 | 17.18 | |||||
| 新能源利用率 | –21.61 | –11.54 | 0.00 | 3.31 | 13.00 | |||||
| 断面输电能力提升 | –18.50 | –8.12 | 0.00 | 6.87 | 17.10 | |||||
| N–1通过率 | –24.98 | –15.28 | 0.00 | 13.27 | 23.98 | |||||
| 地区供电可靠率 | –25.66 | –16.29 | 0.00 | 11.35 | 21.90 | |||||
| 防灾抗灾能力 | –22.19 | –12.23 | 0.00 | 1.27 | 10.59 | |||||
| 网损率 | –18.88 | –8.51 | 0.00 | 5.23 | 15.09 | |||||
| 单位投资增供电量 | –26.36 | –17.02 | 0.00 | 10.94 | 21.67 | |||||
| 单位固定资产售电量 | –23.50 | –13.79 | 0.00 | 4.02 | 13.61 | |||||
| 配电自动化覆盖率 | –26.46 | –16.84 | 0.00 | 11.73 | 22.35 | |||||
| 采集终端覆盖率 | –23.56 | –13.73 | 0.00 | 6.92 | 17.15 | |||||
| 低压分布式光伏用户“四可”能力 | –19.92 | –9.77 | 0.00 | 2.69 | 12.15 |
Table 4 Rate of change in value of integrated investment effectiveness ratings 单位:%
| 二级指标 | –20% | –10% | 0 | +10% | +20% | |||||
| 新能源并网发电量占地区全社会用电量的比例 | –26.82 | –17.36 | 0.00 | 12.21 | 23.12 | |||||
| 终端电气化率 | –19.18 | –8.55 | 0.00 | 7.29 | 17.18 | |||||
| 新能源利用率 | –21.61 | –11.54 | 0.00 | 3.31 | 13.00 | |||||
| 断面输电能力提升 | –18.50 | –8.12 | 0.00 | 6.87 | 17.10 | |||||
| N–1通过率 | –24.98 | –15.28 | 0.00 | 13.27 | 23.98 | |||||
| 地区供电可靠率 | –25.66 | –16.29 | 0.00 | 11.35 | 21.90 | |||||
| 防灾抗灾能力 | –22.19 | –12.23 | 0.00 | 1.27 | 10.59 | |||||
| 网损率 | –18.88 | –8.51 | 0.00 | 5.23 | 15.09 | |||||
| 单位投资增供电量 | –26.36 | –17.02 | 0.00 | 10.94 | 21.67 | |||||
| 单位固定资产售电量 | –23.50 | –13.79 | 0.00 | 4.02 | 13.61 | |||||
| 配电自动化覆盖率 | –26.46 | –16.84 | 0.00 | 11.73 | 22.35 | |||||
| 采集终端覆盖率 | –23.56 | –13.73 | 0.00 | 6.92 | 17.15 | |||||
| 低压分布式光伏用户“四可”能力 | –19.92 | –9.77 | 0.00 | 2.69 | 12.15 |
| 维度 | 指标 | 单位 | ||
| 电力系统特征 | 分布式电源装机渗透率 | % | ||
| 分布式电源装机容量占地区最大负荷比例 | % | |||
| 储能容量占地区新能源装机的比例 | % | |||
| 储能容量占地区最大负荷的比例 | % | |||
| 储能容量占地区峰谷差的比例 | % | |||
| 电网物理规模 | 发电装机容量 | 万kW | ||
| 发电量 | 亿kW·h | |||
| 全社会用电量 | 亿kW·h | |||
| 人均用电量 | kW·h/人 | |||
| 人均生活用电量 | kW·h/人 | |||
| 跨省送出电量 | 亿kW·h | |||
| 10 kV及以上输电线路回路长度 | km | |||
| 10 kV及以上变电容量 | 万kV·A | |||
| 电网基建投资 | 提升新型电力系统电源接入能力的投资 | %、亿元 | ||
| 提升新型电力系统输送电能力的投资 | %、亿元 | |||
| 提升新型电力系统调节能力的投资 | %、亿元 | |||
| 保障新型电力系统安全的投资 | %、亿元 | |||
| 满足新型电力系统用电需求的投资 | %、亿元 | |||
| 数字化赋能电网基建的投资 | %、亿元 |
Table 5 Input indicators for the grid investment effectiveness evaluation model
| 维度 | 指标 | 单位 | ||
| 电力系统特征 | 分布式电源装机渗透率 | % | ||
| 分布式电源装机容量占地区最大负荷比例 | % | |||
| 储能容量占地区新能源装机的比例 | % | |||
| 储能容量占地区最大负荷的比例 | % | |||
| 储能容量占地区峰谷差的比例 | % | |||
| 电网物理规模 | 发电装机容量 | 万kW | ||
| 发电量 | 亿kW·h | |||
| 全社会用电量 | 亿kW·h | |||
| 人均用电量 | kW·h/人 | |||
| 人均生活用电量 | kW·h/人 | |||
| 跨省送出电量 | 亿kW·h | |||
| 10 kV及以上输电线路回路长度 | km | |||
| 10 kV及以上变电容量 | 万kV·A | |||
| 电网基建投资 | 提升新型电力系统电源接入能力的投资 | %、亿元 | ||
| 提升新型电力系统输送电能力的投资 | %、亿元 | |||
| 提升新型电力系统调节能力的投资 | %、亿元 | |||
| 保障新型电力系统安全的投资 | %、亿元 | |||
| 满足新型电力系统用电需求的投资 | %、亿元 | |||
| 数字化赋能电网基建的投资 | %、亿元 |
| 维度 | 指标 | 单位 | ||
| 电网 投资 成效 | 新能源并网发电量占地区全社会用电量的比例 | % | ||
| N–1通过率 | % | |||
| 地区供电可靠率 | % | |||
| 单位投资增供电量 | kW·h/万元 | |||
| 配电自动化覆盖率 | % |
Table 6 Output metrics of the grid investment effectiveness evaluation model (key characterizations of effectiveness)
| 维度 | 指标 | 单位 | ||
| 电网 投资 成效 | 新能源并网发电量占地区全社会用电量的比例 | % | ||
| N–1通过率 | % | |||
| 地区供电可靠率 | % | |||
| 单位投资增供电量 | kW·h/万元 | |||
| 配电自动化覆盖率 | % |
| 指标 | 预测值 | 真实值 | 平均绝对百 分比误差/% | |||
| 新能源并网发 电量占比/% | 3.16 | |||||
| N–1通过率/% | 5.00 | |||||
| 地区供电可靠率/% | 0.05 | |||||
| 单位投资增供电量/ ((kW·h)·万元–1) | 1.64 | |||||
| 配电自动化覆盖率/% | 3.20 | |||||
Table 7 Evaluation errors of indicators
| 指标 | 预测值 | 真实值 | 平均绝对百 分比误差/% | |||
| 新能源并网发 电量占比/% | 3.16 | |||||
| N–1通过率/% | 5.00 | |||||
| 地区供电可靠率/% | 0.05 | |||||
| 单位投资增供电量/ ((kW·h)·万元–1) | 1.64 | |||||
| 配电自动化覆盖率/% | 3.20 | |||||
| 投资类别 | 关键指标 | |
| 提升新型电力系统电源 接入能力的投资 | 风光新能源装机容量 | |
| 风光新能源发电量 | ||
| 数字化赋能电网基建的 投资 | 分布式光伏“四可”终端覆盖率 | |
| 配电自动化覆盖率 | ||
| 提升新型电力系统输送电能力的投资 | 跨省输电通道容量 | |
| 330 kV及以上输电线路回路长度 | ||
| 330 kV及以上变电容量 | ||
| 满足新型电力系统用电 需求的投资 | 全社会用电量 | |
| 最大负荷 | ||
| 110 kV及以下输电线路回路长度 | ||
| 110 kV及以下变电容量 | ||
| 提升新型电力系统调节 能力的投资 | 储能装机容量 | |
| 储能充放电量 | ||
| 保障新型电力系统安全的投资 | N–1通过率 | |
| 故障设备停运率 |
Table 8 Classification of grid investments and their key indicators
| 投资类别 | 关键指标 | |
| 提升新型电力系统电源 接入能力的投资 | 风光新能源装机容量 | |
| 风光新能源发电量 | ||
| 数字化赋能电网基建的 投资 | 分布式光伏“四可”终端覆盖率 | |
| 配电自动化覆盖率 | ||
| 提升新型电力系统输送电能力的投资 | 跨省输电通道容量 | |
| 330 kV及以上输电线路回路长度 | ||
| 330 kV及以上变电容量 | ||
| 满足新型电力系统用电 需求的投资 | 全社会用电量 | |
| 最大负荷 | ||
| 110 kV及以下输电线路回路长度 | ||
| 110 kV及以下变电容量 | ||
| 提升新型电力系统调节 能力的投资 | 储能装机容量 | |
| 储能充放电量 | ||
| 保障新型电力系统安全的投资 | N–1通过率 | |
| 故障设备停运率 |
| 1 |
DAVIDSON I E. Evaluation and effective management of non-technical losses in power networks[J]. SAIEE Africa Research Journal, 2002, 94 (3): 39- 42.
|
| 2 |
KRISTIANSEN M, SVENDSEN H G, KORPÅS M, et al. Multi-stage grid investments incorporating uncertainty in offshore wind development[J]. Energy Procedia, 2017, 137, 468- 476.
|
| 3 |
SARDI J, MITHULANANTHAN N, GALLAGHER M, et al. Multiple community energy storage planning in distribution networks using a cost-benefit analysis[J]. Applied Energy, 2017, 190, 453- 463.
|
| 4 | ALAQEEL T A, SURYANARAYANAN S. Ex ante cost-benefit analysis for optimal deregulation of electricity markets[C]//2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA, USA. IEEE, 2016: 1–5. |
| 5 | KUCSERA D, RAMMERSTORFER M. Grid expansion investments when production is uncertain - a real options model in the context of renewables[J]. SSRN Electronic Journal, 2010. |
| 6 | RYDER G, SHAHID F, YAN S. The grid intelligent planning framework: planning electric utility investments in a time of accelerating change[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg 2011: 205–214. |
| 7 | WAGNER J. Grid investment and support schemes for renewable electricity generation[J]. EWI Working Papers, 2017, |
| 8 |
PAN E S, LI H, WANG Y L, et al. Research on risk evaluation model of distribution network project based on extension matter element[J]. IOP Conference Series: Earth and Environmental Science, 2018, 199, 052035.
|
| 9 | 王国权, 乔琨, 侯荣均, 等. 配电网投资效益评价及投资项目的优选[J]. 电力系统及其自动化学报, 2017, 29 (12): 146- 150. |
| WANG Guoquan, QIAO Kun, HOU Rongjun, et al. Evaluation on investment returns of distribution network and optimization of investment projects[J]. Proceedings of the CSU-EPSA, 2017, 29 (12): 146- 150. | |
| 10 | 赵会茹, 姚满宇, 李兵抗, 等. 考虑乡村振兴贡献度的农网项目投资决策模型[J]. 中国电力, 2024, 57 (6): 181- 192. |
| ZHAO Huiru, YAO Manyu, LI Bingkang, et al. Investment decision model of rural power grid projects considering contribution of rural revitalization[J]. Electric Power, 2024, 57 (6): 181- 192. | |
| 11 | 陈源, 王璐, 黄友珍, 等. 基于多级可拓评价法的配电网规划经济效益评估模型[J]. 中国电力, 2016, 49 (10): 159- 164. |
| CHEN Yuan, WANG Lu, HUANG Youzhen, et al. Economic benefit evaluation model of distribution network planning based on multi-level extension evaluation method[J]. Electric Power, 2016, 49 (10): 159- 164. | |
| 12 | 肖峻, 崔艳妍, 王建民, 等. 配电网规划的综合评价指标体系与方法[J]. 电力系统自动化, 2008, 32 (15): 36- 40. |
| XIAO Jun, CUI Yanyan, WANG Jianmin, et al. A hierarchical performance assessment method on the distribution network planning[J]. Automation of Electric Power Systems, 2008, 32 (15): 36- 40. | |
| 13 |
朱瑞, 娄奇鹤, 靳晓凌, 等. 适应新型电力系统的电网基建功能化投资结构演化研究[J]. 中国电力, 2024, 57 (9): 194- 204.
|
|
ZHU Rui, LOU Qihe, JIN Xiaoling, et al. Research on the evolution of functional investment structure in power grid infrastructure adapting to new power systems[J]. Electric Power, 2024, 57 (9): 194- 204.
|
|
| 14 | 刘若溪, 张建华, 吴迪. 基于风险理论的配电网静态安全性评估指标研究[J]. 电力系统保护与控制, 2011, 39 (15): 89- 95. |
| LIU Ruoxi, ZHANG Jianhua, WU Di. Research on static security index of distribution network based on risk theory[J]. Power System Protection and Control, 2011, 39 (15): 89- 95. | |
| 15 |
刘胜利, 曹阳, 冯跃亮, 等. 配电网投资效益评价与决策模型研究及应用[J]. 电力系统保护与控制, 2015, 43 (2): 119- 125.
|
|
LIU Shengli, CAO Yang, FENG Yueliang, et al. Research and application of distribution grid investment effectiveness evaluation and decision-making model[J]. Power System Protection and Control, 2015, 43 (2): 119- 125.
|
|
| 16 | 曹艺琼, 王学杰, 田鑫, 等. 投资界面延伸下电网接入工程投资博弈策略[J]. 中国电力, 2024, 57 (2): 226- 234. |
| CAO Yiqiong, WANG Xueji, TIAN Xin, et al. Game theory strategy for power grid connection project investment under extended investment interfaces[J]. Electric Power, 2024, 57 (2): 226- 234. | |
| 17 | 张世翔, 邵慧壮. 基于分布式电源的配电网综合效益评估[J]. 上海电力学院学报, 2015, 31 (1): 19- 23. |
| ZHANG Shixiang, SHAO Huizhuang. Overall efficiency assessment of power distribution network based on distribution network[J]. Journal of Shanghai University of Electric Power, 2015, 31 (1): 19- 23. | |
| 18 | 王永利, 马子奔, 秦雨萌, 等. 考虑耦合作用的电网业务组合投资优化[J]. 中国电力, 2024, 57 (3): 197- 205. |
| WANG Yongli, MA Ziben, QIN Yumeng, et al. Investment optimization for power grid business portfolios considering coupling effects.[J]. Electric Power, 2024, 57 (3): 197- 205. | |
| 19 |
陈炽野, 文亚凤, 刘自发, 等. 含有多种分布式电源的配电网综合评估方法[J]. 电力建设, 2015, 36 (1): 128- 135.
|
|
CHEN Chiye, WEN Yafeng, LIU Zifa, et al. Comprehensive evaluation method of distribution network including various types of distributed generation[J]. Electric Power Construction, 2015, 36 (1): 128- 135.
|
|
| 20 | 刘文霞, 牛淑娅, 石道桂, 等. 考虑运行策略及投资主体利益的主动配电系统储能优化配置[J]. 电网技术, 2015, 39 (10): 2697- 2704. |
| LIU Wenxia, NIU Shuya, SHI Daogui, et al. Optimal allocation of ADS battery energy storage considering operation strategy and investment subject benefit[J]. Power System Technology, 2015, 39 (10): 2697- 2704. | |
| 21 | 李昌陵, 梁磊, 程倩, 等. 输配电价改革背景下省级电网投资效率评价研究——考虑产出滞后的超效率SBM—Malmquist模型[J]. 价格理论与实践, 2024, (10): 146–152. |
| LI Changling, LIANG Lei, CHENG Qian, et al. Evaluating provincial power grid investment efficiency under electricity transmission and distribution tariff reform: A super-efficiency SBM-Malmquist model considering output lag[J]. Price: Theory & Practice, 2024, (10): 146–152. | |
| 22 | 杨芳芳, 何飓, 孙文兵, 等. 基于知识图谱的电网投资因素评价模型的研究与应用[J]. 合肥工业大学学报(自然科学版), 2024, 47 (7): 957- 961. |
| YANG Fangfang, HE Ju, SUN Wenbing, et al. Research and application of power grid investment factor evaluation model based on knowledge graph[J]. Journal of Hefei University of Technology (Natural Science)., 2024, 47 (7): 957- 961. | |
| 23 | 陈雪, 周建, 张艳青, 等. 市场机制下考虑不同应用场景的多主体分布式储能投资优化[J]. 供用电, 2024, 41 (4): 79- 88. |
| CHEN Xue, ZHOU Jian, ZHANG Yanqing, et al. Investment optimization of distributed energy storage by multi-investors considering different application scenarios under market mechanism[J]. Distribution & Utilization, 2024, 41 (4): 79- 88. | |
| 24 | 金博文, 黄佳晨. 以配电网整体效益为基础的投资效益评价[J]. 电工技术, 2024, (4): 194- 200, 204. |
| JIN Bowen, HUANG Jiachen. Investment effectiveness evaluation based on overall benefit of distribution network[J]. Electric Engineering, 2024, (4): 194- 200, 204. | |
| 25 | 胡心怡, 翁竞, 邹晓凤. 基于效率效益评价的电网建设投资决策[J]. 经济研究导刊, 2023, (22): 11- 13. |
| HU Xinyin, WENG Jing, ZOU Xiaofeng, et al. Power grid construction investment decision-making based on efficiency-benefit evaluation[J]. Economic Research Guide, 2023, (22): 11- 13. | |
| 26 | 刘稼瑾, 冯华, 丁宁, 等. 电碳协同的园区分布式资源集群综合效益评估方法[J]. 电力科学与技术学报, 2024, 39 (5): 181- 191. |
| LIU Jiajin, FENG Hua, DING Ning, et al. Comprehensive benefit evaluation method for park with distributed resourceclusters by electrical and carbon synergy[J]. Journal of Electric Power Science and Technology, 2024, 39 (5): 181- 191. | |
| 27 | 杨靛青, 叶锟锋. 混合信息下智能变电站建设项目综合效益评价[J]. 电力系统保护与控制, 2023, 51 (23): 45- 58. |
| YANG Dianqing, YE Kunfeng. Comprehensive benefit evaluation of smart substation construction projects from hybrid information[J]. Power System Protection and Control, 2023, 51 (23): 45- 58. | |
| 28 | 梁硕, 王艳松. 基于改进云物元模型的工业园区综合能源系统规划方案评价[J]. 电力系统保护与控制, 2023, 51 (9): 165- 176. |
| LIANG Shuo, WANG Yansong. Evaluation of an integrated energy system planning scheme for an industrial park based onan improved cloud matter-element model[J]. Power System Protection and Control, 2023, 51 (9): 165- 176. |
| [1] | LOU Qihe, LI Yanbin, LIU Zishang, XIANG Yue, JIN Xiao. Evolutionary Trend of Grid Functionalized Investment Structure under Composite Scenarios of New Power Systems [J]. Electric Power, 2025, 58(7): 207-216. |
| [2] | Zhiyuan GAO, Weijin ZHUANG, Feng LI, Fang YU, Hong ZHANG, Yan WANG, Min XIA. High Reusability Verification Platform for Artificial Intelligence Applications in Power Grid Dispatching and Control Field [J]. Electric Power, 2025, 58(3): 142-150. |
| [3] | Chouwei NI, Yang CHEN, Xuesong ZHANG, Da LIN, Kaijian DU, Jian CHEN. Optimal Configuration Method for Electric-thermo-hydrogen System Considering Safety Risks [J]. Electric Power, 2024, 57(9): 124-135. |
| [4] | Bozhi ZHANG, Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU. Power Quality Disturbance Identification Method Based on VMD-SAST [J]. Electric Power, 2024, 57(2): 34-40. |
| [5] | Xiangyang XIA, Daiyu JIANG, Xiaoyong ZENG, Fen GONG, Xiaozhong WU, Xia HUA, Yanpeng LUO, Chao SHI. Research on Control Strategy of Power Conversion System Based on Virtual Oscillator Control [J]. Electric Power, 2024, 57(11): 70-77. |
| [6] | DONG Fugui, XIA Meijuan, LI Wanying. Prediction of Provincial Energy Consumption Intensity and Estimation of Carbon Emission Reduction Potential Based on PSO-GWO [J]. Electric Power, 2023, 56(9): 226-234. |
| [7] | PI Zhiyong, ZHU Yi, LIAO Xuan, LI Zhenxing, FANG Hao, WU Pei. Fault Location Method for Communication Link with Multi-information Fusion Modeling of Smart Substation [J]. Electric Power, 2023, 56(8): 207-215. |
| [8] | YANG Xiaofeng, FANG Yihang, ZHAO Pengzhen, WANG Chengmin, XIE Ning. State Recognition of Wind Turbines Based on K-means and BPNN [J]. Electric Power, 2023, 56(6): 158-166,175. |
| [9] | LIU Shoucheng, WANG Chun, ZOU Zhihui, CHEN Jiahui, ZHOU Han, LIU Wei, ZHANG Xu. Phase Identification of Low Voltage Distribution Network Based on t-SNE Dimension Reduction and Affinity Propagation Clustering Algorithm [J]. Electric Power, 2023, 56(5): 108-117. |
| [10] | YU Aiqing, DING Liqing, WANG Yufei, LI Hao. Multi-fault Repair and Optimization Strategy of Distribution Network Based on Fault Adjacency State [J]. Electric Power, 2023, 56(3): 64-76. |
| [11] | Zihan CHEN, Wei TENG, Xuefeng XU, Xian DING, Yibing LIU. Medium and Long Term Wind Power Prediction Based on Graph Convolutional Network and Wind Velocity Differential Fitting [J]. Electric Power, 2023, 56(10): 96-105. |
| [12] | Yuhui WU, Yangfan ZHANG, Feng GAO, Yu WANG, Yaohan WANG, Weixin YANG, Hong ZHANG. Research on Online Monitoring of Crack Damage of Wind Turbine Blades Based on Working Modal Analysis [J]. Electric Power, 2023, 56(10): 106-114. |
| [13] | XU Jie, WANG Shinong. A Particle Swarm Optimization Algorithm for Smart Grid Voltage Collapse Path [J]. Electric Power, 2023, 56(1): 142-149. |
| [14] | HAN Ziyan, WANG Shouxiang, ZHAO Qianyu, ZHENG Zhijie. A Capacity Optimization Configuration Method for Photovoltaic and Energy Storage System of 5 G Base Station Considering Time-of-Use Electricity Price [J]. Electric Power, 2022, 55(9): 8-15. |
| [15] | LI Wenwu, SHI Qiang, LI Dan, HU Qunyong, TANG Yun, MEI Jinchao. Multi-stage Optimization Forecast of Short-term Power Load Based on VMD and PSO-SVR [J]. Electric Power, 2022, 55(8): 171-177. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
