Electric Power ›› 2024, Vol. 57 ›› Issue (8): 75-84.DOI: 10.11930/j.issn.1004-9649.202310040
• New Energy • Previous Articles Next Articles
Dan LI(), Shiyao QIN(
), Shaolin LI(
), Jing HE
Received:
2023-11-13
Accepted:
2024-02-11
Online:
2024-08-23
Published:
2024-08-28
Supported by:
Dan LI, Shiyao QIN, Shaolin LI, Jing HE. LVRT Measurement Model and Transient Parameter Identification of Wind Turbine Based on Chaotic Particle Swarm[J]. Electric Power, 2024, 57(8): 75-84.
控制模式 | 参数 | |
稳态控制 | kp-lp、ki-lq、kp1、ki1 | |
故障穿越暂态控制 | K1_Ip_LV、K1_Iq_LV、Ipest_LV、Iqest_LV、klvrt_p |
Table 1 The whole process parameters of wind turbine fault ride through
控制模式 | 参数 | |
稳态控制 | kp-lp、ki-lq、kp1、ki1 | |
故障穿越暂态控制 | K1_Ip_LV、K1_Iq_LV、Ipest_LV、Iqest_LV、klvrt_p |
电压跌落幅值(p.u.) | 电压跌落持续时间/ms | |
0.85~0.90 | ||
0.70~0.80 | ||
0.45~0.55 | ||
0.30~0.40 | 900~940 | |
0.15~0.25 | 605~645 |
Table 2 Voltage drop conditions
电压跌落幅值(p.u.) | 电压跌落持续时间/ms | |
0.85~0.90 | ||
0.70~0.80 | ||
0.45~0.55 | ||
0.30~0.40 | 900~940 | |
0.15~0.25 | 605~645 |
参数 | LWPSO | CPSO | 寻优范围 | |||
K1_Ip_LV | 2.043 | 2.005 | [0, 5] | |||
K1_Iq_LV | 1.813 | 1.872 | [0, 10] | |||
Ipest_LV | –0.662 | –0.686 | [–2, 4] | |||
Iqest_LV | 0.275 | 0.291 | [-2, 4] | |||
klvrt_p | 0.317 | 0.317 | [0, 1] |
Table 3 Identification results of different algorithms under symmetrical conditions
参数 | LWPSO | CPSO | 寻优范围 | |||
K1_Ip_LV | 2.043 | 2.005 | [0, 5] | |||
K1_Iq_LV | 1.813 | 1.872 | [0, 10] | |||
Ipest_LV | –0.662 | –0.686 | [–2, 4] | |||
Iqest_LV | 0.275 | 0.291 | [-2, 4] | |||
klvrt_p | 0.317 | 0.317 | [0, 1] |
误差 | 对称大风电压跌落至20% | 对称小风电压跌落至20% | ||||||
LWPSO | CPSO | LWPSO | NPSO | |||||
ΔU | ||||||||
ΔP | ||||||||
ΔQ | ||||||||
ΔIP | ||||||||
ΔIQ |
Table 4 Comparison of fault steady state verification group average errors with different algorithms
误差 | 对称大风电压跌落至20% | 对称小风电压跌落至20% | ||||||
LWPSO | CPSO | LWPSO | NPSO | |||||
ΔU | ||||||||
ΔP | ||||||||
ΔQ | ||||||||
ΔIP | ||||||||
ΔIQ |
工况 | ΔU | ΔP | ΔQ | ΔIP | ΔIQ | |||||
大风35%电压跌落 | ||||||||||
大风50%电压跌落 | ||||||||||
大风75%电压跌落 | ||||||||||
大风90%电压跌落 | ||||||||||
小风35%电压跌落 | ||||||||||
小风50%电压跌落 | ||||||||||
小风75%电压跌落 | ||||||||||
小风90%电压跌落 |
Table 5 Comparison of identification group fault steady state average errors with LWPSO algorithm under different symmetrical conditions
工况 | ΔU | ΔP | ΔQ | ΔIP | ΔIQ | |||||
大风35%电压跌落 | ||||||||||
大风50%电压跌落 | ||||||||||
大风75%电压跌落 | ||||||||||
大风90%电压跌落 | ||||||||||
小风35%电压跌落 | ||||||||||
小风50%电压跌落 | ||||||||||
小风75%电压跌落 | ||||||||||
小风90%电压跌落 |
工况 | ΔU | ΔP | ΔQ | ΔIP | ΔIQ | |||||
大风35%电压跌落 | ||||||||||
大风50%电压跌落 | ||||||||||
大风75%电压跌落 | ||||||||||
大风90%电压跌落 | ||||||||||
小风35%电压跌落 | ||||||||||
小风50%电压跌落 | ||||||||||
小风75%电压跌落 | ||||||||||
小风90%电压跌落 |
Table 6 Comparison of identification group fault steady state average errors with CPSO algorithm under symmetrical conditions
工况 | ΔU | ΔP | ΔQ | ΔIP | ΔIQ | |||||
大风35%电压跌落 | ||||||||||
大风50%电压跌落 | ||||||||||
大风75%电压跌落 | ||||||||||
大风90%电压跌落 | ||||||||||
小风35%电压跌落 | ||||||||||
小风50%电压跌落 | ||||||||||
小风75%电压跌落 | ||||||||||
小风90%电压跌落 |
参数 | LWPSO | CPSO | 寻优范围 | |||
K1_Ip_LV_UBL | 2.510 | 2.480 | [0, 5] | |||
K1_Iq_LV_UBL | 0.157 | 0.433 | [0, 10] | |||
Ipest_LV_UBL | –0.988 | –1.003 | [–2, 4] | |||
Iqest_LV_UBL | 0.136 | 0.101 | [–2, 4] | |||
klvrt_p | 0.317 | 0.317 | [0, 1] |
Table 7 Identification results of different algorithms under asymmetrical conditions
参数 | LWPSO | CPSO | 寻优范围 | |||
K1_Ip_LV_UBL | 2.510 | 2.480 | [0, 5] | |||
K1_Iq_LV_UBL | 0.157 | 0.433 | [0, 10] | |||
Ipest_LV_UBL | –0.988 | –1.003 | [–2, 4] | |||
Iqest_LV_UBL | 0.136 | 0.101 | [–2, 4] | |||
klvrt_p | 0.317 | 0.317 | [0, 1] |
误差 | 不对称大风电压跌落至35% | 不对称小风电压跌落至35% | ||||||
LWPSO | NPSO | LWPSO | NPSO | |||||
ΔU | ||||||||
ΔP | ||||||||
ΔQ | ||||||||
ΔIP | ||||||||
ΔIQ |
Table 8 Comparison of fault steady state verification group average errors with different algorithms
误差 | 不对称大风电压跌落至35% | 不对称小风电压跌落至35% | ||||||
LWPSO | NPSO | LWPSO | NPSO | |||||
ΔU | ||||||||
ΔP | ||||||||
ΔQ | ||||||||
ΔIP | ||||||||
ΔIQ |
工况 | ΔU | ΔP | ΔQ | ΔIP | ΔIQ | |||||
大风20%电压跌落 | ||||||||||
大风50%电压跌落 | ||||||||||
大风75%电压跌落 | ||||||||||
大风90%电压跌落 | ||||||||||
小风20%电压跌落 | ||||||||||
小风50%电压跌落 | ||||||||||
小风75%电压跌落 | ||||||||||
小风90%电压跌落 |
Table 9 Comparison of identification group fault steady state average errors with LWPSO algorithm under asymmetrical conditions
工况 | ΔU | ΔP | ΔQ | ΔIP | ΔIQ | |||||
大风20%电压跌落 | ||||||||||
大风50%电压跌落 | ||||||||||
大风75%电压跌落 | ||||||||||
大风90%电压跌落 | ||||||||||
小风20%电压跌落 | ||||||||||
小风50%电压跌落 | ||||||||||
小风75%电压跌落 | ||||||||||
小风90%电压跌落 |
工况 | ΔU | ΔP | ΔQ | ΔIP | ΔIQ | |||||
大风20%电压跌落 | 0.091 | |||||||||
大风50%电压跌落 | ||||||||||
大风75%电压跌落 | ||||||||||
大风90%电压跌落 | ||||||||||
小风20%电压跌落 | ||||||||||
小风50%电压跌落 | ||||||||||
小风75%电压跌落 | ||||||||||
小风90%电压跌落 |
Table 10 Comparison of identification group fault steady state average errors with CPSO algorithm under asymmetrical conditions
工况 | ΔU | ΔP | ΔQ | ΔIP | ΔIQ | |||||
大风20%电压跌落 | 0.091 | |||||||||
大风50%电压跌落 | ||||||||||
大风75%电压跌落 | ||||||||||
大风90%电压跌落 | ||||||||||
小风20%电压跌落 | ||||||||||
小风50%电压跌落 | ||||||||||
小风75%电压跌落 | ||||||||||
小风90%电压跌落 |
1 | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37 (1): 1- 9. |
SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37 (1): 1- 9. | |
2 | BLAABJERG F, MA K. Future on power electronics for wind turbine systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1 (3): 139- 152. |
3 | 崔森, 颜湘武, 李锐博. 提高双馈风电机组动态无功协调控制能力的实验研究[J]. 电力系统保护与控制, 2022, 50 (8): 117- 129. |
CUI Sen, YAN Xiangwu, LI Ruibo. Experimental research on improving the dynamic reactive power coordinated control capability of doubly-fed induction wind turbine[J]. Power System Protection and Control, 2022, 50 (8): 117- 129. | |
4 | Wind energy generation systems-Part 27-1: Electrical simulation models-Generic models[S]. IEC 61400-27-1. 2020. |
5 |
DJASI H, YAZID K, MENAA M. Parameters identification of a brushless doubly fed induction machine using[J]. IET Electric Power Applications, 2017, 11 (9): 1585- 1595.
DOI |
6 |
SU J Y, CHEN Y, ZHANG D B, et al. Full-parameter identification model based on back propagation algorithm for brushless doubly fed induction generator[J]. IEEE Transactions on Power Electronics, 2020, 35 (10): 9953- 9958.
DOI |
7 |
吴峰, 汪海洋, 金宇清, 等. 基于正交优选粒子群算法的双馈风电系统控制器参数优化整定[J]. 电力系统自动化, 2014, 38 (15): 19- 24.
DOI |
WU Feng, WANG Haiyang, JIN Yuqing, et al. Parameter tuning of doubly fed induction generator systems for wind turbines based on orthogonal design and particle swarm optimization[J]. Automation of Electric Power Systems, 2014, 38 (15): 19- 24.
DOI |
|
8 | 王彤, 邢其鹏, 李鸿恩, 等. 计及虚拟惯量控制的DFIG等效惯量在线评估与响应特性分析[J]. 电力系统保护与控制, 2022, 50 (11): 52- 60. |
WANG Tong, XING Qipeng, LI Hongen, et al. Online evaluation and response characteristics analysis of equivalent inertia of a doubly-fed induction generator incorporating virtual inertia control[J]. Power System Protection and Control, 2022, 50 (11): 52- 60. | |
9 | 乔腾, 张益铭, 曹一家, 等. 基于概率可靠性评估的永磁直驱风机低电压穿越控制模型参数辨识[J]. 中国电力, 2021, 54 (12): 102- 111. |
QIAO Teng, ZHANG Yiming, CAO Yijia, et al. Parameter identification of low voltage ride-through control model for permanent magnet direct-drive wind turbine based on probabilistic reliability assessment[J]. Electric Power, 2021, 54 (12): 102- 111. | |
10 |
JIN Y Q, LU C J, JU P, et al. Probabilistic preassessment method of parameter identification accuracy with an application to identify the drive train parameters of DFIG[J]. IEEE Transactions on Power Systems, 2020, 35 (3): 1769- 1782.
DOI |
11 | 李辉, 吴优, 谢翔杰, 等. 基于改进PSO的双馈风电机组传动链参数辨识[J]. 太阳能学报, 2021, 42 (12): 134- 142. |
LI Hui, WU You, XIE Xiangjie, et al. Parameter identification of transmission chain for doubly-fed wind turbine based on improved particle swarm optimization[J]. Acta Energiae Solaris Sinica, 2021, 42 (12): 134- 142. | |
12 | 薛飞, 李宏强, 李旭涛, 等. 基于LSTM神经网络的双馈风机控制参数辨识方法[J]. 中国电力, 2023, 56 (6): 31- 39. |
XUE Fei, LI Hongqiang, LI Xutao, et al. Identification method for control parameters of doubly-fed induction generator based on LSTM neural network[J]. Electric Power, 2023, 56 (6): 31- 39. | |
13 |
金宇清, 鞠平, 刘伟航, 等. 基于量测信号扰动的DFIG变流器控制参数辨识方法[J]. 电力系统自动化, 2016, 40 (8): 36- 42.
DOI |
JIN Yuqing, JU Ping, LIU Weihang, et al. Parameter identification method for converter controller of DFIG based on measurement signal disturbance[J]. Automation of Electric Power Systems, 2016, 40 (8): 36- 42.
DOI |
|
14 | 许饶琪, 彭晓涛, 秦世耀, 等. 基于M序列的双馈风机变流器参数辨识方法研究[J]. 电网技术, 2022, 46 (2): 578- 586. |
XU Raoqi, PENG Xiaotao, QIN Shiyao, et al. Parameter identification of doubly-fed induction generator converter based on M-sequence[J]. Power System Technology, 2022, 46 (2): 578- 586. | |
15 | 秦继朔, 贾科, 孔繁哲, 等. 基于寻优算法的永磁风机并网逆变器故障穿越控制参数分步辨识[J]. 中国电机工程学报, 2021, 41 (S1): 59- 69. |
QIN Jishuo, JIA Ke, KONG Fanzhe, et al. Stepwise parameter identification of fault ride-through control parameters of PMSG grid-connected inverter based on optimization algorithm[J]. Proceedings of the CSEE, 2021, 41 (S1): 59- 69. | |
16 | 韩平平, 范桂军, 孙维真, 等. 基于数据测试和粒子群优化算法的光伏逆变器LVRT特性辨识[J]. 电力自动化设备, 2020, 40 (2): 49- 54. |
HAN Pingping, FAN Guijun, SUN Weizhen, et al. Identification of LVRT characteristics of photovoltaic inverters based on data testing and PSO algorithm[J]. Electric Power Automation Equipment, 2020, 40 (2): 49- 54. | |
17 | 曹斌, 刘文焯, 原帅, 等. 基于低电压穿越试验的光伏发电系统建模研究[J]. 电力系统保护与控制, 2020, 48 (18): 146- 155. |
CAO Bin, LIU Wenzhuo, YUAN Shuai, et al. Modeling of photovoltaic power system based on low voltage ride-through test[J]. Power System Protection and Control, 2020, 48 (18): 146- 155. | |
18 |
LIU Z H, WEI H L, LI X H, et al. Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO[J]. IEEE Transactions on Power Electronics, 2018, 33 (12): 10858- 10871.
DOI |
19 | 刘道华, 原思聪, 兰洋, 等. 混沌映射的粒子群优化方法[J]. 西安电子科技大学学报, 2010, 37 (4): 764- 769. |
LIU Daohua, YUAN Sicong, LAN Yang, et al. Method of particle swarm optimization based on the chaos map[J]. Journal of Xidian University, 2010, 37 (4): 764- 769. | |
20 | 国家市场监督管理总局, 国家标准化管理委员会. 风力发电机组 故障电压穿越能力测试规程: GB/T 36995—2018[S]. 北京: 中国标准出版社, 2019. |
21 | 国家市场监督管理总局, 国家标准化管理委员会. 风电场接入电力系统技术规定 第1部分: 陆上风电: GB/T 19963.1—2021[S]. 北京: 中国标准出版社, 2021. |
22 | 国家能源局. 风电机组电气仿真模型验证规程: NB/T 31053—2021[S]. 北京: 中国电力出版社, 2021. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||