Electric Power ›› 2024, Vol. 57 ›› Issue (1): 148-157.DOI: 10.11930/j.issn.1004-9649.202307072
• Low-Carbon Planning and Operation for New-Type Power Systems • Previous Articles Next Articles
					
													Daxing WANG1(
), Yan Ning2(
), Jingpei WANG3(
), Yang XU4(
), Jun BI5, Mingbiao ZHOU6, Peng WANG4(
)
												  
						
						
						
					
				
Received:2023-07-19
															
							
															
							
																	Accepted:2023-10-17
															
							
																	Online:2024-01-23
															
							
							
																	Published:2024-01-28
															
							
						Supported by:Daxing WANG, Yan Ning, Jingpei WANG, Yang XU, Jun BI, Mingbiao ZHOU, Peng WANG. Robust Simplified Modeling of Microgrid in the Context of Constructing New Power Systems[J]. Electric Power, 2024, 57(1): 148-157.
| 参数 | 灵敏度 | 参数 | 灵敏度 | 参数 | 灵敏度 | 参数 | 灵敏度 | |||||||
| Xd | 0.1231 | Kq | 0.0010 | 0.4468 | 0.1342 | |||||||||
| 0.4201 | Tpc | 0.2034 | 0.2834 | 0.0934 | ||||||||||
| 0.1521 | T0 | 0.0236 | 0.0961 | H | 0.0128 | |||||||||
| Xq | 0.7662 | Kd | 0.3741 | 0.0263 | D | 0.8341 | ||||||||
| Kp | 0.6613 | 0.3127 | Tq | 0.002 | Kqc | 0.0026 | ||||||||
| Tp | 0.4115 | Ts | 0.0357 | Kpc | 0.3701 | Tqc | 0.0001 | |||||||
| Tr | 0.1096 | T1 | 0.6236 | T2 | 0.2413 | T3 | 0.2123 | |||||||
| T4 | 0.1918 | Ka | 0.6621 | K | 0.7122 | Ta | 0.0490 | |||||||
| Kc | 0.0062 | 
Table 1 Sensitivities of synchronous machine and VSC parameters
| 参数 | 灵敏度 | 参数 | 灵敏度 | 参数 | 灵敏度 | 参数 | 灵敏度 | |||||||
| Xd | 0.1231 | Kq | 0.0010 | 0.4468 | 0.1342 | |||||||||
| 0.4201 | Tpc | 0.2034 | 0.2834 | 0.0934 | ||||||||||
| 0.1521 | T0 | 0.0236 | 0.0961 | H | 0.0128 | |||||||||
| Xq | 0.7662 | Kd | 0.3741 | 0.0263 | D | 0.8341 | ||||||||
| Kp | 0.6613 | 0.3127 | Tq | 0.002 | Kqc | 0.0026 | ||||||||
| Tp | 0.4115 | Ts | 0.0357 | Kpc | 0.3701 | Tqc | 0.0001 | |||||||
| Tr | 0.1096 | T1 | 0.6236 | T2 | 0.2413 | T3 | 0.2123 | |||||||
| T4 | 0.1918 | Ka | 0.6621 | K | 0.7122 | Ta | 0.0490 | |||||||
| Kc | 0.0062 | 
| 模型 | 参数 | |||||||
| 同步电机本体 | D | Xq | ||||||
| 励磁系统 | K | Ka | T1 | |||||
| 调速系统 | Kd | |||||||
| 电压源型变流器 | Kp | Tp | Kpc | |||||
| 负荷以及并联阻抗 | Peq | Qeq | Req | Xeq | ||||
Table 2 Identified key parameters of equivalent model
| 模型 | 参数 | |||||||
| 同步电机本体 | D | Xq | ||||||
| 励磁系统 | K | Ka | T1 | |||||
| 调速系统 | Kd | |||||||
| 电压源型变流器 | Kp | Tp | Kpc | |||||
| 负荷以及并联阻抗 | Peq | Qeq | Req | Xeq | ||||
| 聚类 组别  | 特征数据集 个数  | 聚类 组别  | 特征数据集 个数  | 聚类 组别  | 特征数据集 个数  | |||||
| 1 | 362 | 4 | 57 | 7 | 64 | |||||
| 2 | 53 | 5 | 78 | |||||||
| 3 | 245 | 6 | 41 | 
Table 3 The clustering results of characteristic data set
| 聚类 组别  | 特征数据集 个数  | 聚类 组别  | 特征数据集 个数  | 聚类 组别  | 特征数据集 个数  | |||||
| 1 | 362 | 4 | 57 | 7 | 64 | |||||
| 2 | 53 | 5 | 78 | |||||||
| 3 | 245 | 6 | 41 | 
| 1 | 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55 (5): 1- 11. | 
| ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China's energy and power system[J]. Electric Power, 2022, 55 (5): 1- 11. | |
| 2 | 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54 (3): 1- 11. | 
| ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54 (3): 1- 11. | |
| 3 |  
											KONTIS E O, PAPADOPOULOS T A, SYED M H, et al. Artificial-intelligence method for the derivation of generic aggregated dynamic equivalent models[J]. IEEE Transactions on Power Systems, 2019, 34 (4): 2947- 2956. 
																							 DOI  | 
										
| 4 |  
											XU Y H, GAO T C. Sub-synchronous frequency domain-equivalent modeling for wind farms based on rotor equivalent resistance characteristics[J]. Global Energy Interconnection, 2022, 5 (3): 293- 300. 
																							 DOI  | 
										
| 5 | 于飞, 董乐, 李梅航, 等. 基于等效短线路解耦法的风电场模型分割仿真研究[J]. 电力系统保护与控制, 2023, 51 (19): 164- 172. | 
| YU Fei, DONG Le, LI Meihang, et al. Model segmentation simulation of a wind farm based on an equivalent short-circuit decoupling method[J]. Power System Protection and Control, 2023, 51 (19): 164- 172. | |
| 6 | 查晓明, 张扬, 成燕, 等. 用于简化微电网结构的微分几何广义同调方法[J]. 电工技术学报, 2012, 27 (1): 24- 31. | 
| ZHA Xiaoming, ZHANG Yang, CHENG Yan, et al. New method of extended coherency for micro-grid based on homology in differential geometry[J]. Transactions of China Electrotechnical Society, 2012, 27 (1): 24- 31. | |
| 7 | HUA J C, AI Q, YAO Y. Dynamic equivalent of microgrid considering flexible components[J]. IET Generation, Transmission & Distribution, 2015, 9(13): 1688–1696. | 
| 8 | FENG X, LUBOSNY Z, BIALEK J. Dynamic equivalencing of distribution network with high penetration of distributed generation[C]//Proceedings of the 41st International Universities Power Engineering Conference. Newcastle upon Tyne, UK. IEEE, 2007: 467–471. | 
| 9 | FENG X, LUBOSNY Z, BIALEK J W. Identification based dynamic equivalencing[C]//2007 IEEE Lausanne Power Tech. Lausanne, Switzerland. IEEE, 2008: 267–272. | 
| 10 | GOLPÎRA H, SEIFI H, HAGHIFAM M R. Dynamic equivalencing of an active distribution network for large-scale power system frequency stability studies[J]. IET Generation, Transmission & Distribution, 2015, 9 (15): 2245- 2254. | 
| 11 | PAPADOPOULOS P N, PAPADOPOULOS T A, CROLLA P, et al. Black-box dynamic equivalent model for microgrids using measurement data[J]. IET Generation, Transmission & Distribution, 2014, 8 (5): 851- 861. | 
| 12 |  
											ZAKER B, GHAREHPETIAN G B, KARRARI M. A novel measurement-based dynamic equivalent model of grid-connected microgrids[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (4): 2032- 2043. 
																							 DOI  | 
										
| 13 |  
											MILANOVIĆ J V, MAT ZALI S. Validation of equivalent dynamic model of active distribution network cell[J]. IEEE Transactions on Power Systems, 2013, 28 (3): 2101- 2110. 
																							 DOI  | 
										
| 14 | CARI E P T, ALBERTO L F C, BRETAS N G. A new methodology for parameter estimation of synchronous generator from disturbance measurements[C]//2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, PA, USA. IEEE, 2008: 1–7. | 
| 15 | DENECKE J, ERLICH I. Dynamic equivalents of active distribution networks[C]//2017 IEEE Power & Energy Society General Meeting. Chicago, IL, USA. IEEE, 2018: 1–5. | 
| 16 | DENECKE J, SCHEWAREGA F, ERLICH I. Identification of dynamic equivalents for active distribution networks[C]//2018 IEEE Power & Energy Society General Meeting (PESGM). Portland, OR, USA. IEEE, 2018: 1–5. | 
| 17 |  
											ZHENG C, WANG S R, LIU Y L, et al. A novel equivalent model of active distribution networks based on LSTM[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (9): 2611- 2624. 
																							 DOI  | 
										
| 18 | 中国电力科学研究院. 电力系统分析综合程序7.1版动态元件模型库用户手册[R]. 北京: 中国电力科学研究院, 2016. | 
| China Electric Power Research Institute. Dynamic element model library user's manual of power system analysis software package V7.1[R]. Beijing: China Electric Power Research Institute, 2016. | |
| 19 |  
											LIANG J, NG S K K, KENDALL G, et al. Load signature study—part I: basic concept, structure, and methodology[J]. IEEE Transactions on Power Delivery, 2010, 25 (2): 551- 560. 
																							 DOI  | 
										
| 20 | WANG F, FRANCO-PENYA H H, KELLEHER J D, et al. An analysis of the application of simplified silhouette to the evaluation of k-means clustering validity[C]//PERNER P. International Conference on Machine Learning and Data Mining in Pattern Recognition. Cham: Springer, 2017: 291–305. | 
| 21 | 王鹏, 张真源, 黄琦, 等. 计及模型泛化能力的小水电机群动态等值方法研究[J]. 中国电机工程学报, 2018, 38 (14): 4138- 4147. | 
| WANG Peng, ZHANG Zhenyuan, HUANG Qi, et al. A dynamic equivalent method for small hydroelectric generation stack considering model generalization ability[J]. Proceedings of the CSEE, 2018, 38 (14): 4138- 4147. | |
| 22 | 谢会玲, 鞠平, 罗建裕, 等. 基于灵敏度计算的电力系统参数可辨识性分析[J]. 电力系统自动化, 2009, 33 (7): 17- 21. | 
| XIE Huiling, JU Ping, LUO Jianyu, et al. Identifiability analysis of load parameters based on sensitivity calculation[J]. Automation of Electric Power Systems, 2009, 33 (7): 17- 21. | |
| 23 | 曹丽华, 丁皓轩, 葛维春, 等. 基于遗传算法的热电机组储热罐最优运行策略[J]. 中国电机工程学报, 2020, 40 (11): 3574- 3582. | 
| CAO Lihua, DING Haoxuan, Ge Weichun, et al. Optimal operation strategy of heat storage tank in CHP unit based on genetic algorithm[J]. Proceedings of the CSEE, 2020, 40 (11): 3574- 3582. | |
| 24 | 田芳, 周孝信, 史东宇, 等. 基于卷积神经网络综合模型和稳态特征量的电力系统暂态稳定评估[J]. 中国电机工程学报, 2019, 39 (14): 4025- 4031. | 
| TIAN Fang, ZHOU Xiaoxin, SHI Dongyu, et al. Power system transient stability assessment based on comprehensive convolutional neural network model and steady-state features[J]. Proceedings of the CSEE, 2019, 39 (14): 4025- 4031. | |
| 25 | WANG P, ZHANG Z Y, HUANG Q, et al. Wind farm dynamic equivalent modeling method for power system probabilistic stability assessment[C]//2019 IEEE Industry Applications Society Annual Meeting. Baltimore, MD, USA. IEEE, 2019: 1–7. | 
| [1] | ZHANG Chenyu, YU Jianyu, SHI Mingming, LIU Ruihuang. Analysis and Optimization of Voltage Dynamic Control Performance of Renewable Energy Microgrid based on Grid-Forming Energy Storage [J]. Electric Power, 2025, 58(9): 115-123. | 
| [2] | HUANGFU Xiaowen, LI Ke, XU Changqing, JIANG Xiaoliang, YU Haozheng, WANG Rujing. Decentralized Peer-to-peer Trading Strategy Considering Flexibility of Multiple Microgrids [J]. Electric Power, 2025, 58(9): 194-204, 218. | 
| [3] | GAO Fangjie, SUN Yujie, LI Yi, LE Ying, ZHANG Jiguang, XU Chuanbo, LIU Dunnan. Robust Optimization Scheduling of Island Multi-energy Microgrid Considering Offshore Wind Power to Hydrogen [J]. Electric Power, 2025, 58(7): 68-79. | 
| [4] | WANG Yong, WANG Hui, HU Yahan, Zhao Peng, LI Xuenan. Microgrid Optimization and Power Quality Improvement Based on Wind-Solar Hybrid Energy Storage System [J]. Electric Power, 2025, 58(7): 162-167. | 
| [5] | LI Ke, PAN Tinglong, XU Dezhi. Short-Term Power Load Forecasting Based on MSCNN-BiGRU-Attention [J]. Electric Power, 2025, 58(6): 10-18. | 
| [6] | BU Yuluo, WU Junyong, SHI Fashun, JI Jiashen. Integrated Assessment of Transient Angle Stability and Voltage Stability Considering Renewable Energy Sources [J]. Electric Power, 2025, 58(6): 122-136. | 
| [7] | LI Peng, ZU Wenjing, LIU Yixin, TIAN Chunzheng, HAO Yuanzhao, LI Huixuan. State Estimation Method for Distribution Network Based on Incomplete Measurement Data [J]. Electric Power, 2025, 58(5): 1-10. | 
| [8] | FAN Huicong, DUAN Zhiguo, CHEN Zhiyong, ZHU Shijia, LIU Hang, LI Wenxiao, YANG Yang. Two-layer Optimization Scheduling for Off-grid Microgrids Based on Multi-agent Deep Policy Gradient [J]. Electric Power, 2025, 58(5): 11-20, 32. | 
| [9] | SHEN Xin, WANG Gang, ZHAO Yitao, LUO Zhao, LI Zhao, YANG Xiaohua. A Non-invasive Load Recognition Approach Incorporating SENet Attention Mechanism and GA-CNN [J]. Electric Power, 2025, 58(5): 33-42. | 
| [10] | CHEN Jiong, WU Wenqing, LI Hao, QIN Ziyi, CHEN Xiang, CHEN Xuanyuan. Research on Control Strategy of Independent Micro-grid with Photovoltaic Energy Storage [J]. Electric Power, 2025, 58(5): 74-81, 198. | 
| [11] | WANG Li, JIANG Yuxiang, ZENG Xiangjun, ZHAO Bin, LI Junhao. Secondary Frequency Control of Islanded Microgrid Based on Deep Reinforcement Learning [J]. Electric Power, 2025, 58(5): 176-188. | 
| [12] | Zhibin YAN, Li LI, Peng YANG, Huihui SONG, bin CHE, Panlong JIN. Optimal Scheduling Strategy for Microgrid Considering the Support Capabilities of Grid Forming Energy Storage [J]. Electric Power, 2025, 58(2): 103-110. | 
| [13] | Kun HUANG, Ming FU, Jiaxiang ZHAI, Haochen HUA. Distributed Coordination Optimization for Economic Operation of the Multi-Microgrid System Based on Improved Linearization ADMM [J]. Electric Power, 2025, 58(2): 193-202. | 
| [14] | HE Jintao, WANG Can, WANG Mingchao, CHENG Bentao, LIU Yuzheng, CHANG Wenhan, WANG Rui, YU Han. Energy Management Strategy for Microgrid Cluster Based on Improved Double Deep Q-Network [J]. Electric Power, 2025, 58(10): 14-26. | 
| [15] | LIU Hua, XIONG Zaibao, JIANG Taoning, GAO Yu, JIN Yuhan, GE Leijiao. Distributed Reinforcement Learning-Driven Dynamic Energy Optimization Management Strategy for Microgrid Clusters [J]. Electric Power, 2025, 58(10): 50-62. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
