Electric Power ›› 2023, Vol. 56 ›› Issue (11): 10-19.DOI: 10.11930/j.issn.1004-9649.202212011
• Offshore Wind Power Transmission and Grid Connection Technology • Previous Articles Next Articles
Xiangjing SU1(), Haibo YU1(
), Yang FU1(
), Shuxin TIAN1, Haiyu LI2, Fuhai GENG2
Received:
2022-12-05
Accepted:
2023-03-05
Online:
2023-11-23
Published:
2023-11-28
Supported by:
Xiangjing SU, Haibo YU, Yang FU, Shuxin TIAN, Haiyu LI, Fuhai GENG. Probabilistic Forecasting of Offshore Wind Power Based on Dual-stage Attentional LSTM and Joint Quantile Loss Function[J]. Electric Power, 2023, 56(11): 10-19.
预测模型 | SAW/kW | SCRPS | ||
DQR | 483.23 | 94.94 | ||
LSTM-QR | 457.44 | 89.54 | ||
DALSTM | 407.28 | 71.41 | ||
MT-DALSTM | 372.37 | 64.23 |
Table 1 Comparison of probabilistic predicting results
预测模型 | SAW/kW | SCRPS | ||
DQR | 483.23 | 94.94 | ||
LSTM-QR | 457.44 | 89.54 | ||
DALSTM | 407.28 | 71.41 | ||
MT-DALSTM | 372.37 | 64.23 |
预测模型 | SAW/kW | SCRPS | ||
MT-DALSTM(无变桨特征) | 394.46 | 69.17 | ||
MT-DALSTM | 372.37 | 64.23 |
Table 2 Comparison of pitch characteristics probabilistic predicting results
预测模型 | SAW/kW | SCRPS | ||
MT-DALSTM(无变桨特征) | 394.46 | 69.17 | ||
MT-DALSTM | 372.37 | 64.23 |
1 | 全球风能协会(GWEC). 全球风能2022年度报告[EB/OL].https://gwec. net/policy- research/reports/. |
2 |
孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47 (4): 1129- 1143.
DOI |
SUN Rongfu, ZHANG Tao, HE Qing, et al. Review on key technologies and applications in wind power forecasting[J]. High Voltage Engineering, 2021, 47 (4): 1129- 1143.
DOI |
|
3 |
迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36 (14): 3758- 3771.
DOI |
CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36 (14): 3758- 3771.
DOI |
|
4 |
YUAN X H, TAN Q X, LEI X H, et al. Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine[J]. Energy, 2017, 129, 122- 137.
DOI |
5 |
LIU X L, LIN Z, FENG Z M. Short-term offshore wind speed forecast by seasonal ARIMA - a comparison against GRU and LSTM[J]. Energy, 2021, 227, 120492.
DOI |
6 |
张群, 唐振浩, 王恭, 等. 基于长短时记忆网络的超短期风功率预测模型[J]. 太阳能学报, 2021, 42 (10): 275- 281.
DOI |
ZHANG Qun, TANG Zhenhao, WANG Gong, et al. Ultra-short-term wind power prediction model based on long and short term memory network[J]. Acta Energiae Solaris Sinica, 2021, 42 (10): 275- 281.
DOI |
|
7 |
LIN Z, LIU X L. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network[J]. Energy, 2020, 201, 117693.
DOI |
8 |
黄冬梅, 庄兴科, 胡安铎, 等. 基于灰色关联分析和K均值聚类的短期负荷预测[J]. 电力建设, 2021, 42 (7): 110- 117.
DOI |
HUANG Dongmei, ZHUANG Xingke, HU Anduo, et al. Short-term load forecasting based on similar-day selection with GRA-K-means[J]. Electric Power Construction, 2021, 42 (7): 110- 117.
DOI |
|
9 |
梁智, 孙国强, 卫志农, 等. 基于变量选择与高斯过程回归的短期负荷预测[J]. 电力建设, 2017, 38 (2): 122- 128.
DOI |
LIANG Zhi, SUN Guoqiang, WEI Zhinong, et al. Short-term load forecasting based on variable selection and Gaussian process regression[J]. Electric Power Construction, 2017, 38 (2): 122- 128.
DOI |
|
10 | MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[EB/OL]. 2014: arXiv: 1406.6247.https://arxiv.org/abs/1406.6247. |
11 |
YUAN K, ZHANG K F, ZHENG Y X, et al. Irregular distribution of wind power prediction[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6 (6): 1172- 1180.
DOI |
12 |
WANG Y, HU Q H, MENG D Y, et al. Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model[J]. Applied Energy, 2017, 208, 1097- 1112.
DOI |
13 |
WANG Z, WANG W S, LIU C, et al. Short-term probabilistic forecasting for regional wind power using distance-weighted kernel density estimation[J]. IET Renewable Power Generation, 2018, 12 (15): 1725- 1732.
DOI |
14 |
阎洁, 刘永前, 韩爽, 等. 分位数回归在风电功率预测不确定性分析中的应用[J]. 太阳能学报, 2013, 34 (12): 2101- 2107.
DOI |
YAN Jie, LIU Yongqian, HAN Shuang, et al. Quantile regression in uncertainty analysis of wind power forecasting[J]. Acta Energiae Solaris Sinica, 2013, 34 (12): 2101- 2107.
DOI |
|
15 | CANNON A J. Quantile regression neural networks: implementation in R and application to precipitation downscaling[J]. Computers & Geosciences, 2011, 37 (9): 1277- 1284. |
16 |
WAN C, LIN J, WANG J H, et al. Direct quantile regression for nonparametric probabilistic forecasting of wind power generation[J]. IEEE Transactions on Power Systems, 2017, 32 (4): 2767- 2778.
DOI |
17 |
WANG H Z, WANG G B, LI G Q, et al. Deep belief network based deterministic and probabilistic wind speed forecasting approach[J]. Applied Energy, 2016, 182, 80- 93.
DOI |
18 |
李丹, 张远航, 杨保华, 等. 基于约束并行LSTM分位数回归的短期电力负荷概率预测方法[J]. 电网技术, 2021, 45 (4): 1356- 1364.
DOI |
LI Dan, ZHANG Yuanhang, YANG Baohua, et al. Short time power load probabilistic forecasting based on constrained parallel-LSTM neural network quantile regression mode[J]. Power System Technology, 2021, 45 (4): 1356- 1364.
DOI |
|
19 | GUO T, LIN T, ANTULOV-FANTULIN N. Exploring interpretable LSTM neural networks over multi-variable data[EB/OL]. 2019: arXiv: 1905.12034.https://arxiv.org/abs/1905.12034. |
20 |
LI A, XIAO F, ZHANG C, et al. Attention-based interpretable neural network for building cooling load prediction[J]. Applied Energy, 2021, 299, 117238.
DOI |
21 |
HE X N, HE Z K, SONG J K, et al. NAIS: neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (12): 2354- 2366.
DOI |
22 |
HU J M, TANG J W, LIN Y Y. A novel wind power probabilistic forecasting approach based on joint quantile regression and multi-objective optimization[J]. Renewable Energy, 2020, 149, 141- 164.
DOI |
23 | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7482–7491. |
24 | 万灿, 崔文康, 宋永华. 新能源电力系统概率预测: 基本概念与数学原理[J]. 中国电机工程学报, 2021, 41 (19): 6493- 6509. |
WAN Can, CUI Wenkang, SONG Yonghua. Probabilistic forecasting for power systems with renewable energy sources: basic concepts and mathematical principles[J]. Proceedings of the CSEE, 2021, 41 (19): 6493- 6509. | |
25 |
WAN C, NIU M, SONG Y H, et al. Pareto optimal prediction intervals of electricity price[J]. IEEE Transactions on Power Systems, 2017, 32 (1): 817- 819.
DOI |
[1] | Li FENG, Lianmei ZHANG, Jiajia WEI, Changhong DENG, Guo LI, Jiayue YIN. Development & Thinking of Offshore Wind Power Based on Life Cycle Economic Evaluation [J]. Electric Power, 2024, 57(9): 80-93. |
[2] | Wenjin JIANG, Qiaomei LIU, Xiaodong YANG, Dingfei QUE, Yu SHEN, Xianan HUANG, Zhenhua LAI. Optimal Allocation of Offshore Wind Power-Multiple Energy Storage System Considering Gas-Solid Two-Phase Hydrogen Storage Characteristics [J]. Electric Power, 2024, 57(9): 103-112. |
[3] | Ningbo HUANG, Jianwei GAO, Chuanbo XU, Xuanhua XU, Shutong ZHAO, Xunjie GOU, Xiaojing JIANG. Site Selection of Offshore Wind Power-Hydrogen Production and Refueling Ports Based on Empirical Mining and Hybrid Linguistic Approach [J]. Electric Power, 2024, 57(9): 113-123. |
[4] | Zhongfei CHEN, Yue ZHAO, Qiuna CAI, Qiaoyu ZHANG, Zelin WANG, Xiaojuan DAI, Yuguo CHEN. Adequacy Evaluation of Power System Ramping Capability Based on Net Load Forecast Error Statistics [J]. Electric Power, 2024, 57(5): 50-60. |
[5] | Yan GAO, Hanbin WU, Jixin ZHANG, Huaming ZHANG, Pei ZHANG. Day-Ahead Probabilistic Prediction Model for Photovoltaic Power Based on Combined Deep Learning [J]. Electric Power, 2024, 57(4): 100-110. |
[6] | WU Xiaogang, YAN Jie, GE Chang, TANG Yajie, NI Chouwei, JI Qingfeng. Ultra-Short-Term Power Forecasting Method for Wind-Solar-Hydro Integration Based on Improved GRU-CNN [J]. Electric Power, 2023, 56(9): 178-186,205. |
[7] | SU Kaiyuan, DONG Wenkai, QIU Yinfeng, WEI Che, XIE Xiaorong. Study on Using Distributed Wind-Storage Integrated System to Improve Frequency Stability of Offshore Oilfield Power Systems [J]. Electric Power, 2023, 56(5): 163-171. |
[8] | LU Youwen, CUI Hao, CHEN Jianing, PENG Xiangjia, FENG Shuang, LIU Dong. Intelligent Identification Method of Wind Farm Sub-synchronous/Super-synchronous Oscillation Parameters Based on RA-CNN and Synchrophasor [J]. Electric Power, 2023, 56(4): 46-55,67. |
[9] | Zhenzhen ZHOU, Yunhai SONG, Yuhao HE, Liwei WANG, Heyan HUANG, Jue HE, Zhihang ZHU, Yunfeng YAN. Extensible Classification Method for Power Personnel Behavior Based on Pose Estimation [J]. Electric Power, 2023, 56(11): 77-85. |
[10] | Xiaohe WANG, Haichao YANG, Shuang SONG, Yuxin YANG, Gui YIN, Ke WANG. Overvoltage Mechanism of 66 kV Submarine Cable Transmission System for Offshore Wind Farm [J]. Electric Power, 2023, 56(11): 29-37, 48. |
[11] | Bing LI, Yunshan BAI, Kuan ZHAO, Congbin GUO, Yongjie ZHAI. Surface Defect Detection Algorithm for Wind Turbine Blades Based on HSCA-YOLOv7 [J]. Electric Power, 2023, 56(10): 43-52. |
[12] | CHEN Tie, ZHANG Zhifan, LI Xianshan, CHEN Yifu, LI Hongxin. Prediction of Dissolved Gas Concentration in Transformer Oil Based on Hybrid Mode Decomposition and LSTM-CNN [J]. Electric Power, 2023, 56(1): 132-141. |
[13] | SUN Yanxia, FANG Shiwen, LI Zhen. Transient Voltage-Reactive Power Modeling of Offshore Wind Power Collection and Transmission System with AC Cables and Characteristic Analysis [J]. Electric Power, 2022, 55(4): 166-174. |
[14] | MA Jinlong, SUN Yong, YE Xueshun. Planning Mechanism and Incentive Strategies of European Offshore Wind Power and Their Enlightenment [J]. Electric Power, 2022, 55(4): 1-11,92. |
[15] | SHA Jun, XU Yusen, LIU Chongchong, FENG Dingdong, XU Zheng, ZANG Haixiang. Short-Term Wind Power Prediction Based on Variational Modal Decomposition and Quantile Convolution-Recurrent Neural Network [J]. Electric Power, 2022, 55(12): 61-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||