Electric Power ›› 2021, Vol. 54 ›› Issue (9): 17-23.DOI: 10.11930/j.issn.1004-9649.202003035
Previous Articles Next Articles
ZENG Youjun1, XIAO Xianyong1, XU Fangwei1, ZHENG Lin2
Received:
2020-03-05
Revised:
2020-05-26
Online:
2021-09-05
Published:
2021-09-14
Supported by:
ZENG Youjun, XIAO Xianyong, XU Fangwei, ZHENG Lin. A Short-Term Load Forecasting Method Based on CNN-BiGRU-NN Model[J]. Electric Power, 2021, 54(9): 17-23.
[1] 肖国泉, 王春, 张福伟. 电力负荷预测[M]. 北京: 中国电力出版社, 2001. [2] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137 LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137 [3] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370-4376 ZHAO Bing, WANG Zengping, JI Weijia, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12): 4370-4376 [4] 祝学昌. 基于IFOA-GRNN的短期电力负荷预测方法研究[J]. 电力系统保护与控制, 2020, 48(9): 121-127 ZHU Xuechang. Research on short-term power load forecasting method based on IFOA-GRNN[J]. Power System Protection and Control, 2020, 48(9): 121-127 [5] 马静波. 电力系统短期负荷预测方法研究[D]. 成都: 四川大学, 2005. MA Jingbo.. Research on power system short-term load forecasting approaches[D]. Chengdu: Sichuan University, 2005. [6] 何忠华, 张涛, 胡娱欧, 等. 考虑大气污染防治措施影响的短期电力负荷预测模型研究[J]. 智慧电力, 2019, 47(5): 1-9 HE Zhonghua, ZHANG Tao, HU Yu'ou, et al. Short-term electric load forecasting model considering the influence of air pollution prevention and control policy[J]. Smart Power, 2019, 47(5): 1-9 [7] 刘继东, 韩学山, 楚成博, 等. 考虑非气象因素的电网夏季降温负荷研究[J]. 电力自动化设备, 2013, 33(2): 40-46 LIU Jidong, HAN Xueshan, CHU Chengbo, et al. Cooling load of summer grid considering non-meteorological factors[J]. Electric Power Automation Equipment, 2013, 33(2): 40-46 [8] 李焱, 贾雅君, 李磊, 等. 基于随机森林算法的短期电力负荷预测[J]. 电力系统保护与控制, 2020, 48(21): 117-124 LI Yan, JIA Yajun, LI Lei, et al. Short term power load forecasting based on a stochastic forest algorithm[J]. Power System Protection and Control, 2020, 48(21): 117-124 [9] 艾欣, 周志宇, 魏妍萍, 等. 基于自回归积分滑动平均模型的可转移负荷竞价策略[J]. 电力系统自动化, 2017, 41(20): 26-31, 104 AI Xin, ZHOU Zhiyu, WEI Yanping, et al. Bidding strategy for time-shiftable loads based on autoregressive integrated moving average model[J]. Automation of Electric Power Systems, 2017, 41(20): 26-31, 104 [10] 王勇, 黄国兴, 彭道刚. 带反馈的多元线性回归法在电力负荷预测中的应用[J]. 计算机应用与软件, 2008, 25(1): 82-84 WANG Yong, HUANG Guoxing, PENG Daogang. Application of multiple linear-feedback regression analysis to electric load forecasting[J]. Computer Applications and Software, 2008, 25(1): 82-84 [11] HONG T, WANG P. Fuzzy interaction regression for short term load forecasting[J]. Fuzzy Optimization and Decision Making, 2014, 13(1): 91-103. [12] 潘峰, 程浩忠, 杨镜非, 等. 基于支持向量机的电力系统短期负荷预测[J]. 电网技术, 2004(21): 39-42 [13] DREZGA I, RAHMAN S. Short-term load forecasting with local ANN predictors[J]. IEEE Transactions on Power Systems, 1999, 14(3): 844-850. [14] 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 53-62 WANG Zengping, ZHAO Bing, JI Weijia, et al. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5): 53-62 [15] RYU S, NOH J, KIM H. Deep neural network based demand side short term load forecasting[J]. Energies, 2016, 10(1): 3. [16] 杨智宇, 刘俊勇, 刘友波, 等. 基于自适应深度信念网络的变电站负荷预测[J]. 中国电机工程学报, 2019, 39(14): 4049-4061 YANG Zhiyu, LIU Junyong, LIU Youbo, et al. Transformer load forecasting based on adaptive deep belief network[J]. Proceedings of the CSEE, 2019, 39(14): 4049-4061 [17] LAHOUAR A, BEN HADJ SLAMA J. Day-ahead load forecast using random forest and expert input selection[J]. Energy Conversion and Management, 2015, 103: 1040-1051. [18] 陈洪波, 王璨, 徐斌, 等. 基于LSTM网络的短期负荷预测[J]. 电工技术, 2019(9): 27-29 CHEN Hongbo, WANG Can, XU Bin, et al. Short-term load forecasting based on LSTM network[J]. Electric Engineering, 2019(9): 27-29 [19] 孙明敏. 基于GRU-Attention的中文文本分类[J]. 现代信息科技, 2019(3): 10-12 SUN Mingmin. Chinese text classification based on GRU-attention[J]. Modern Information Technology, 2019(3): 10-12 [20] BENGIO Y I, GOODFELLOW J. COURVILLE A. Deep learning (Vol. 1)[M]. Cambridge: MIT press, 2016: 326-366. [21] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. [22] 邱锡鹏.神经网络与深度学习[DB/OL]. (2020-02-11)[ 2020-04-09]. https://github.com/nndl/nndl.github.io. [23] 王伟, 孙玉霞, 齐庆杰, 等. 基于BiGRU-attention神经网络的文本情感分类模型[J]. 计算机应用研究, 2019, 36(12): 3558-3564 WANG Wei, SUN Yuxia, QI Qingjie, et al. Text sentiment classification model based on BiGRU-attention neural network[J]. Application Research of Computers, 2019, 36(12): 3558-3564 [24] MAAS A L, QI P, XIE Z A, et al. Building DNN acoustic models for large vocabulary speech recognition[J]. Computer Speech & Language, 2017, 41: 195-213. [25] 中国电机工程学会. 第九届“中国电机工程学会杯”全国大学生电工数学建模竞赛题目[EB/OL]. (2016-05-27)[2020-04-12]. http://shumo.neepu.edu.cn/index.php/Home/Zxdt/news/id/3.html. |
[1] | Jian LI, Jun ZHANG, Xinyang HAN, Xiaoling JIN. Overall Framework and Function Design of Quantified Gaming Method for New Power System Forms [J]. Electric Power, 2025, 58(3): 1-7, 97. |
[2] | Lei ZHANG, Xiaowei MA, Manliang WANG, Li CHEN, Bingtuan GAO. Distributed Collaborative Control Strategy for Intra-regional AGC Units in Interconnected Power System with Renewable Energy [J]. Electric Power, 2025, 58(3): 8-19. |
[3] | Pei ZHANG, Majing YANG, Fang ZHANG, Hua XIE, Guangyi LIU, Wenyun LI, Xuegang LU, Zhenyi WANG, Suwei ZHAI. Review of the Application of Graph Database and Graph Computing in Power System Dispatch and Operation [J]. Electric Power, 2025, 58(3): 119-131. |
[4] | Zhiyuan GAO, Weijin ZHUANG, Feng LI, Fang YU, Hong ZHANG, Yan WANG, Min XIA. High Reusability Verification Platform for Artificial Intelligence Applications in Power Grid Dispatching and Control Field [J]. Electric Power, 2025, 58(3): 142-150. |
[5] | Mingrun TANG, Ruoyang LI, Muran LIU, Xiaoyu CHENG, Yao LIU, Shuxia YANG. Prediction of Large-Scale Renewable Energy Access under Steady State of Electric Power System [J]. Electric Power, 2025, 58(2): 126-132. |
[6] | Chenhao ZHAO, Zaibin JIAO, Chenghao LI, Di ZHANG, Penghui ZHANG. Adaptive Assessment of Power System Transient Stability Based on Active Transfer Learning [J]. Electric Power, 2025, 58(1): 70-77. |
[7] | Wu DONG, Jian ZHANG, Qinyong ZHOU, Libo ZHANG, Haoyue GONG. An Overview of the Evolution of Security and Stability of China’s Power System [J]. Electric Power, 2025, 58(1): 115-127. |
[8] | Lei XI, Yixiao WANG, Miao HE, Chen CHENG, Xilong TIAN. FDIA Detection in Power Grid Based on Opposition-Based Whale Optimization Algorithm and Multi-layer Extreme Learning Machine [J]. Electric Power, 2024, 57(9): 20-31. |
[9] | Rui ZHU, Qihe LOU, Xiaoling JIN, Chang LIU. Evolution of Functional Investment Structure of Power Grid Infrastructure Suitable for New Power System [J]. Electric Power, 2024, 57(9): 194-204. |
[10] | Guanjun FU, Fuqiang ZHANG, Peng XIA, Junshu FENG, Jinfang ZHANG. Functional Orientation and Development Prospect of Natural Gas Power Generation in New Power System [J]. Electric Power, 2024, 57(8): 67-74. |
[11] | Suwei ZHAI, Yinyin LI, Fan DU, Wenyun LI, Kaiyan PAN, Junkai LIANG. Distributed Reactive Power Control Strategy of Distribution Network Considering Massive Distributed Energy Access [J]. Electric Power, 2024, 57(8): 138-144. |
[12] | Bijun LI, Wei LI, Xijian DONG. Online Assessment of Control-Based System Security and Stability Service Quality for New Power System [J]. Electric Power, 2024, 57(8): 168-181. |
[13] | Muyu ZHU, Hongzhong MA, Pengyu GUO, Wenjing XUAN. State of Charge Estimation of Energy Storage Battery Pack under Typical Peak/Frequency Modulation Conditions [J]. Electric Power, 2024, 57(6): 18-26. |
[14] | Xiaoning YE, Caixia WANG, Qionghui LI, Chao YANG. Power Supply Ensuring Measures and Implications of Foreign Countries' Power Systems with High Proportion of New Energy [J]. Electric Power, 2024, 57(4): 61-67. |
[15] | Xue WANG, Lin LIU, Qingdong ZHUO, Haipeng ZHANG, Ling YANG, Fangyuan XU, Yuchen CAO. Power Difference Feed-forward Oscillation Suppression Method for New Power System Based on Virtual Inertial Control [J]. Electric Power, 2024, 57(4): 68-76. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1311
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 223
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||