Electric Power ›› 2018, Vol. 51 ›› Issue (6): 160-165.DOI: 10.11930/j.issn.1004-9649.201707018
Previous Articles Next Articles
CHEN Kunyang, GUO Tingting, WANG Haigang, HU Dong
Received:
2017-07-18
Revised:
2018-01-08
Online:
2018-06-05
Published:
2018-06-12
Supported by:
CLC Number:
CHEN Kunyang, GUO Tingting, WANG Haigang, HU Dong. Potential Analysis of Synergetic Mercury Removal from Coal-Fired Flue Gas on Purification Equipment after Retrofitting of Ultra-low Emission[J]. Electric Power, 2018, 51(6): 160-165.
[1] 王起超, 马如龙. 煤及其灰渣中的汞[J]. 中国环境科学, 1997, 17(1):76-79.WANG Qichao, MA Rulong. The mercury in coal and its cinder[J]. China Environmental Science, 1997, (1):76-79. [2] 任建莉, 周劲松, 骆仲泱, 等. 煤中汞燃烧过程析出规律试验研究[J]. 环境科学学报, 2002, 22(3):289-293.REN Jianli, ZHOU Jinsong, LUO Zhongyang, et al. Study of mercury emission during coal combustion[J]. Acta Scientiae Circumstantiae, 2002, 22(3):289-293. [3] USEPA. National emission standards for hazardous air pollutants from coal- and oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial-institutional, and small industrial-commercial-institutional steam generating units; Technical correction; Final rule:40 CFR Parts 60 and 63[S]. 2016. [4] 李辉, 王强, 朱法华, 等.燃煤电厂汞的排放控制要求与监测方法[J]. 环境工程技术学报, 2011, 1(3):226-231.LI Hui, WANG Qiang, ZHU Fahua, et al. The control requirements and monitoring methods for mercury emission in coal-fired power plants[J]. Journal of Environmental Engineering Technology, 2011, 1(3):226-231. [5] 徐玮. 燃煤烟气中汞的形态分布特征及净化设备的除汞效果[D]. 上海:上海交通大学, 2010. [6] USEPA. Mercury study report to congress, Volume Ⅱ:An inventory of anthropogenic mercury emissions in the United States[R]. Washington, 1997. [7] 王铮, 薛建明, 许月阳, 等. 选择性催化还原协同控制燃煤烟气中汞排放效果影响因素研究[J]. 中国电机工程学报, 2013, 33(14):32-37.WANG Zheng, XUE Jianming, XU Yueyang, et al. Research on influencing factors of SCR's cooperative control in mercury emissions from coal-fired flue[J]. Proceedings of the CSEE, 2013, 33(14):32-37. [8] RICHARDSON C, MACHALEK T, MILLER S, et al. Effect of NOx control processes on mercury speciation in utility flue gas[J]. Journal of the Air & Waste Management Association, 2002, 52(8):941-947. [9] 杨立国. 燃煤烟气汞形态转化及脱除机理研究[D]. 南京:东南大学, 2008. [10] MEIJ R, VREDENBREGT L, WINKEL H T. The fate and behavior of mercury in coal-fired power plants[J]. Journal of the Air & Waste Management Association. 2002, 52(8):912-917. [11] 何胜. 燃煤烟气汞催化氧化的试验和机理研究[D]. 杭州:浙江大学, 2009. [12] HONG H J, HAM S W, KIM M H, et al. Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions[J]. Korean Journal of Chemical Engineering, 2010, 27(4):1117-1122. [13] SVACHULA J, ALEMANY L J, FERLAZZO N, et al. Oxidation of SO2 to SO3 over honeycomb DeNOXing catalysts[J]. Industrial & Engineering Chemistry Research, 1993, 32(5), 826-834. [14] ZHUANG Y, LAUMB J, LIGGETT R, et al. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology, 2007, 88(10):929-934. [15] CAO Y, CHEN B, WU J, et al. Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal[J]. Energy & Fuels, 2007, 21(1):145-156. [16] 华晓宇, 章良利, 宋玉彩, 等. 燃煤机组超低排放改造对汞排放的影响[J]. 热能动力工程, 2016, 31(7):110-116.HUA Xiaoyu, ZHANG Liangli, SONG Yucai, et al. Influence of the ultra-low emission modification of a coal-fired unit on the mercury emissions[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(7):110-116. [17] CAO Y, CHENG C M, CHEN C W, et al. Abatement of mercury emissions in the coal combustion process equipped with a fabric filter baghouse[J]. Fuel, 2008, 87(15/16):3322-3330. [18] 刘迎晖, 郑楚光, 程俊峰, 等. 燃煤烟气中汞的形态及其分析方法[J]. 燃料化学学报, 2000, 28(5):463-467.LIU Yinghui, ZHENG Chuguang, CHENG Junfeng, et al. Speciation and analysis of mercury in coal combustion flue gas[J]. Journal of Fuel Chemistry and Technology, 2000, 28(5):463-467. [19] PUDASAINEE D, KIM J H, YOON Y S, et al. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD[J]. Fuel, 2012, 93(1):312-318. [20] KOLKER A, SENIOR C L, QUICK J C. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems[J]. Applied Geochemistry, 2006, 21(11):1821-1836. [21] 张乐. 燃煤过程汞排放测试及汞排放量估算研究[D]. 杭州:浙江大学, 2007. [22] 许月阳, 薛建明, 王宏亮, 等. 燃煤烟气常规污染物净化设施协同控制汞的研究[J]. 中国电机工程学报, 2014, 34(23):3924-3931.XU Yueyang, XUE Jianming, WANG Hongliang, et al. Research on mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants[J]. Proceedings of the CSEE, 2014, 34(23):3924-3931. [23] 张静怡. 燃煤电站烟气中汞脱除与减排技术[J]. 中国电力, 2012, 45(9):76-79.ZHANG Jingyi. Technology of mercury removal and reduction for flue gas of coal-fired power plants[J]. Electric Power, 2012, 45(9):76-79. [24] 殷立宝, 禚玉群, 徐齐胜, 等. 中国燃煤电厂汞排放规律[J]. 中国电机工程学报, 2013, 63(29):1-9.YIN Libao, ZHUO Yuqun, XU Qisheng, et al. Mercury emission from coal-fired power plants in China[J]. Proceedings of the CSEE, 2013, 63(29):1-9. [25] 熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9):2217-2223.XIONG Guilong, LI Shuiqing, CHEN Sheng, et al. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants[J]. Proceedings of the CSEE, 2015, 35(9):2217-2223. [26] 胡斌, 刘勇, 任飞, 等. 低低温电除尘协同脱除细颗粒与SO3实验研究[J]. 中国电机工程学报, 2016, 36(16):4319-4325.HU Bin, LIU Yong, REN Fei, et al. Experimental study on simultaneous control of fine particle and SO3 by low-low temperature electrostatic precipitator[J]. Proceedings of the CSEE, 2016, 36(16):4319-4325. [27] 林翔. 低低温电除尘器提效及多污染物协同治理探讨[C]//第十六届中国电除尘学术会议, 武汉, 2015. [28] 莫华, 朱法华, 王圣, 等. 湿式电除尘器在燃煤电厂的应用及其对PM2.5的减排作用[J]. 中国电力, 2013, 46(11):62-65.MO Hua, ZHU Fahua, WANG Sheng, et al. Application of WESP in coal-fired power plants and its effect on emission reduction of PM2.5[J]. Electric Power, 2013, 46(11):62-65. [29] 田贺忠. 利用湿式静电除尘器(ESP)脱除汞[J]. 国际电力, 2005, 9(6):62-64.TIAN Hezhong. Mercury control by using wet electrostatic precipitators[J]. International Electric Power for China, 2005, 9(6):62-64. [30] 宋畅, 张翼, 郝剑, 等. 燃煤电厂超低排放改造前后汞污染排放特征[J]. 环境科学研究, 2017. 30(5):672-677.SONG Chang, ZHANG Yi, HAO Jian, et al. Mercury emission characteristics from coal-fired power plant before and after ultra-low emission retrofitting[J]. Research of Environmental Sciences, 2017. 30(5):672-677. [31] 中国大唐集团科学技术研究院有限公司火力发电技术研究院. 燃煤机组烟尘一体化脱除关键技术研究及应用技术报告[R]. 北京. 2017. [32] 史文峥, 杨萌萌, 张绪辉, 等. 燃煤电厂超低排放技术路线与协同脱除[J]. 中国电机工程学报, 2016, 36()16:4308-4318.SHI Wenzheng, YANG Mengmeng, ZHANG Xuhui, et al. Ultra-low emission technical route of coal-fired power plants and the cooperative removal[J]. Proceedings of the CSEE, 2016, 36(16):4308-4318. [33] 张晖栋. 燃煤电站电袋复合除尘器协同脱汞的研究[J]. 中国环保产业, 2017(2):54-57.ZHANG Huidong. Study on de-mercury of electrical bag compound precipitator in coal-fired power station[J]. China Environmental Protection Industry, 2017(2):54-57. [34] 刘玉坤, 禚玉群, 陈昌和, 等. 燃煤电站脱硫系统的脱汞性能[J]. 中国电力, 2011, 44(12):68-72.LIU Yukun, ZHUO Yuqun, CHEN Changhe, et al. Mercury removal performance of desulfurization systems in coal-fired power plants[J]. Electric Power, 2011, 44(12):68-72. [35] 李少华, 徐英健, 王虎, 等. WFGD系统脱硫及脱汞特性模拟研究[J]. 锅炉技术, 2014, 45(6):72-76.LI Shaohua, XU Yingjian, WANG Hu, et al. Simulation study on the take off mercury and sulfur performance in the wet flue gas desulfurization system[J]. Boiler Technology, 2014, 45(6):72-76. [36] 莫华, 朱杰, 黄志杰, 等. 超低排放下不同湿法脱硫技术脱除SO3效果测试与分析[J]. 中国电力, 2017, 50(3):46-50.MO Hua, ZHU Jie, HUANG Zhijie, et al. Test and study on SO3 removal performance of different wet flue gas desulfurization technologies at ultra-low pollutants emission[J]. Electric Power, 2017, 50(3):46-50. [37] 魏宏鸽, 徐明华, 柴磊, 等. 双塔双循环脱硫系统的运行现状分析与优化措施探讨[J]. 中国电力, 2016, 49(10):132-135.WEI Hongge, XU Minghua, CHAI Lei, et al. Current operation state analysis and optimization method exploration on double-tower double-cycle wet-FGD systems[J]. Electric Power, 2016, 49(10):132-135. |
[1] | ZHU Qianlong, JIN Xiaoqiang, WANG Xuli, SU Fanya, DENG Tianbai, TAO Jun. Minimum Risk Quantification Method for Equivalent Error Threshold of Wind Farm Based on Bayes Criterion [J]. Electric Power, 2025, 58(4): 98-106. |
[2] | Xue WANG, Lin LIU, Wendi LIU, Yanpeng ZHAI, Ling YANG, Fangyuan XU, Yan GAO, Jixin ZHANG. A Novel Inertia Delay Optimization Control Strategy for New Power Systems Based on Crisscross Optimization [J]. Electric Power, 2024, 57(7): 12-20. |
[3] | Hang LIU, Hao SHEN, Yong YANG, Ling JI, Yang YU. Load Forecast of Electric Trucks Aggregation Based on Higher-order Markov Chains [J]. Electric Power, 2024, 57(5): 61-69. |
[4] | Jian ZHOU, Nan FENG, Yiping JI, Yuyao FENG, Shuai WANG, Shaoyan LI. A Decision-making Optimization Method for Network Reconfiguration of Power System With New Energy Considering the Synergistic Support of Source-grid [J]. Electric Power, 2024, 57(10): 150-157. |
[5] | Daxing WANG, Yan Ning, Jingpei WANG, Yang XU, Jun BI, Mingbiao ZHOU, Peng WANG. Robust Simplified Modeling of Microgrid in the Context of Constructing New Power Systems [J]. Electric Power, 2024, 57(1): 148-157. |
[6] | Jing WANG, Yi YUAN, Yinchi SHAO, Jinqi ZHANG, Ran DING, Yanjiang GONG. Multi-Objective Cluster Classification and Voltage Control Approach for Active Distribution Network Considering Resource Reserve Degree [J]. Electric Power, 2023, 56(12): 69-79. |
[7] | Long JIANG, Liang CHENG, Jinjing LI, Qing LI. Quantitative Evaluation of Wet Desulfurization Slurry Quality and Spray Layer Operation in Coal-fired Power Plants [J]. Electric Power, 2023, 56(11): 217-225, 235. |
[8] | Chao YI, Da TENG, Shaowei SONG, Ou CHEN. Application Analysis of Flue Gas Condensation Recovery in Coal-fired Power Plants by Spraying Method [J]. Electric Power, 2023, 56(11): 226-235. |
[9] | Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram [J]. Electric Power, 2023, 56(10): 71-79. |
[10] | LIU Yi. A Pilot-scale Research on SO3 Control in Flue Gas of Coal Fired Power Plant [J]. Electric Power, 2022, 55(7): 201-208. |
[11] | XIONG Wei, ZHANG Yue, DOU Jianzhong, JIANG Baofeng, SHAN Lianfei. Construction and Application of Discrete-Time-Domain Framework -based Power-Grid State Space [J]. Electric Power, 2022, 55(6): 111-117. |
[12] | ZHANG Zhiyong, MO Hua, WANG Meng, SHUAI Wei. Study of Flue Gas Pollutant Control in a 600 MW Coal-Fired Unit [J]. Electric Power, 2022, 55(5): 204-210. |
[13] | ZHANG Guozhu, ZHANG Juntai, WEN Yu, YANG Kaixuan, LIU Ming, LIU Jiping. Study on Off-design Condition Characteristics and Control Strategy of Fluegas Waste Heat and Water Recovery System of Coal-Fired Power Plants [J]. Electric Power, 2022, 55(4): 214-220. |
[14] | LIU Guangjian, YUE Fengzhan, ZHOU Shuo, WANG Lin, GAN Xue. Water Balance Model and Water-Saving Analysis for Coal-fired Power Plants [J]. Electric Power, 2022, 55(4): 221-228. |
[15] | HUANG Jingjie, LIU Louzhi, YIN Xufeng, LI Xueqin, PAN Xuan, ZHOU Renjun. Coordinated and Optimized Operation of Waste Incineration Plant-Flue Gas Treatment-P2G with Carbon Cycle [J]. Electric Power, 2022, 55(3): 152-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||