Electric Power ›› 2024, Vol. 57 ›› Issue (7): 163-172.DOI: 10.11930/j.issn.1004-9649.202305128
• Power System • Previous Articles Next Articles
Shuo WANG1(), Huijuan HUO1, Dan XU1, Xin QIE2, Cheng XIN1, Weiwei LI1, Jing DUAN1
Received:
2023-05-29
Accepted:
2023-08-27
Online:
2024-07-23
Published:
2024-07-28
Supported by:
Shuo WANG, Huijuan HUO, Dan XU, Xin QIE, Cheng XIN, Weiwei LI, Jing DUAN. Calculation and Sharing of Regional Carbon Emission Reduction Considering Construction of Ultra High Voltage AC Projects[J]. Electric Power, 2024, 57(7): 163-172.
运行方式和时段 | 特高压 通道潮流/ 万kW | 500 kV 通道潮流/ 万kW | 特高压 通道潮流 占比/% | 500 kV 通道潮流 占比/% | ||||
2025年夏季低谷 | 267 | 620 | 30 | 70 | ||||
2025年夏季腰荷 | 318 | 728 | 30 | 70 | ||||
2025年夏季高峰 | 352 | 805 | 30 | 70 | ||||
2025年汛期高峰 | 376 | 816 | 32 | 68 | ||||
2025年夏季风电大发 | 346 | 799 | 30 | 70 | ||||
2030年夏季高峰 | 515 | 685 | 43 | 57 | ||||
2030年汛期高峰 | 524 | 702 | 43 | 57 | ||||
2030年夏季风电大发 | 548 | 742 | 42 | 58 |
Table 1 Power flow distribution of UHV and 500 kV channels at the north-south power transmission section
运行方式和时段 | 特高压 通道潮流/ 万kW | 500 kV 通道潮流/ 万kW | 特高压 通道潮流 占比/% | 500 kV 通道潮流 占比/% | ||||
2025年夏季低谷 | 267 | 620 | 30 | 70 | ||||
2025年夏季腰荷 | 318 | 728 | 30 | 70 | ||||
2025年夏季高峰 | 352 | 805 | 30 | 70 | ||||
2025年汛期高峰 | 376 | 816 | 32 | 68 | ||||
2025年夏季风电大发 | 346 | 799 | 30 | 70 | ||||
2030年夏季高峰 | 515 | 685 | 43 | 57 | ||||
2030年汛期高峰 | 524 | 702 | 43 | 57 | ||||
2030年夏季风电大发 | 548 | 742 | 42 | 58 |
场景 | 年份 | 北电南送通 道断面电量 | 特高压 通道电量 | 特高压通道 清洁电量 | ||||
不外送 | 2025 | 645 | 194 | 107 | ||||
2030 | 763 | 320 | 224 | |||||
外送100亿kW·h | 2025 | 603 | 181 | 100 | ||||
2030 | 719 | 302 | 211 | |||||
外送150亿kW·h | 2025 | 582 | 175 | 96 | ||||
2030 | 697 | 293 | 205 |
Table 2 Typical annual transmission capacity of the north-south power transmission section and UHV channel 单位:亿kW·h
场景 | 年份 | 北电南送通 道断面电量 | 特高压 通道电量 | 特高压通道 清洁电量 | ||||
不外送 | 2025 | 645 | 194 | 107 | ||||
2030 | 763 | 320 | 224 | |||||
外送100亿kW·h | 2025 | 603 | 181 | 100 | ||||
2030 | 719 | 302 | 211 | |||||
外送150亿kW·h | 2025 | 582 | 175 | 96 | ||||
2030 | 697 | 293 | 205 |
场景 | 年份 | 煤电 | 清洁电源 | 其他火电 | 合计 | |||||
不外送 | 2025 | 736 | 352 | 179 | 1267 | |||||
2030 | 737 | 383 | 216 | 1336 | ||||||
外送100亿kW·h | 2025 | 724 | 399 | 186 | 1309 | |||||
2030 | 716 | 441 | 223 | 1380 | ||||||
外送150亿kW·h | 2025 | 718 | 422 | 190 | 1330 | |||||
2030 | 705 | 470 | 226 | 1402 |
Table 3 Prospects for southern power generation of provincial power grid 单位:亿kW·h
场景 | 年份 | 煤电 | 清洁电源 | 其他火电 | 合计 | |||||
不外送 | 2025 | 736 | 352 | 179 | 1267 | |||||
2030 | 737 | 383 | 216 | 1336 | ||||||
外送100亿kW·h | 2025 | 724 | 399 | 186 | 1309 | |||||
2030 | 716 | 441 | 223 | 1380 | ||||||
外送150亿kW·h | 2025 | 718 | 422 | 190 | 1330 | |||||
2030 | 705 | 470 | 226 | 1402 |
联 盟 | 参与 主体 | 情形描述 | ||
1 | — | 维持2025年状况,负荷、电源、电网因素均无发展 | ||
2 | 源 | 清洁能源装机提高 | ||
3 | 网 | 特高压通道输电能力提升 | ||
4 | 荷 | 经济发展带来负荷增长 | ||
5 | 源网 | 清洁能源装机与特高压输电能力提高,负荷无变化 | ||
6 | 源荷 | 负荷与清洁能源装机提高,特高压输电能力无变化 | ||
7 | 网荷 | 负荷与特高压工程输送能力提高,装机结构无变化 | ||
8 | 源网荷 | 负荷增长、清洁能源装机占比与特高压工程输电能力 提高 |
Table 4 The combination of alliance entities under the influence of transmission
联 盟 | 参与 主体 | 情形描述 | ||
1 | — | 维持2025年状况,负荷、电源、电网因素均无发展 | ||
2 | 源 | 清洁能源装机提高 | ||
3 | 网 | 特高压通道输电能力提升 | ||
4 | 荷 | 经济发展带来负荷增长 | ||
5 | 源网 | 清洁能源装机与特高压输电能力提高,负荷无变化 | ||
6 | 源荷 | 负荷与清洁能源装机提高,特高压输电能力无变化 | ||
7 | 网荷 | 负荷与特高压工程输送能力提高,装机结构无变化 | ||
8 | 源网荷 | 负荷增长、清洁能源装机占比与特高压工程输电能力 提高 |
联盟 | 参与主体 | 可提升消纳清洁电量 | ||
1 | — | — | ||
2 | 源 | 0 | ||
3 | 网 | 0 | ||
4 | 荷 | 0 | ||
5 | 源网 | 206 | ||
6 | 源荷 | 179 | ||
7 | 网荷 | 0 | ||
8 | 源网荷 | 296 |
Table 5 Dissipation capacity of different alliances under power transmission 单位:亿kW·h
联盟 | 参与主体 | 可提升消纳清洁电量 | ||
1 | — | — | ||
2 | 源 | 0 | ||
3 | 网 | 0 | ||
4 | 荷 | 0 | ||
5 | 源网 | 206 | ||
6 | 源荷 | 179 | ||
7 | 网荷 | 0 | ||
8 | 源网荷 | 296 |
参数 | {网} | {源网} | {网荷} | {源网荷} | ||||
V(S)/(亿kW·h) | 0 | 206 | 0 | 296 | ||||
V(S\{i})/(亿kW·h) | 179 | 0 | 0 | 0 | ||||
Si/个 | 1 | 2 | 2 | 3 | ||||
1/3 | 1/6 | 1/6 | 1/3 | |||||
73 |
Table 6 Calculation results of Shapley value under transmission action
参数 | {网} | {源网} | {网荷} | {源网荷} | ||||
V(S)/(亿kW·h) | 0 | 206 | 0 | 296 | ||||
V(S\{i})/(亿kW·h) | 179 | 0 | 0 | 0 | ||||
Si/个 | 1 | 2 | 2 | 3 | ||||
1/3 | 1/6 | 1/6 | 1/3 | |||||
73 |
场景 | 年份 | 无交流工程时 特高压直流工程 清洁电量 | 有交流工程时 特高压直流工程 清洁电量 | |||
不外送 | 2025 | 218 | 284 | |||
2030 | 335 | 436 | ||||
外送100亿kW·h | 2025 | 203 | 265 | |||
2030 | 303 | 398 | ||||
外送150亿kW·h | 2025 | 190 | 254 | |||
2030 | 293 | 390 |
Table 7 Transmission capacity of UHV DC project 单位:亿kW·h
场景 | 年份 | 无交流工程时 特高压直流工程 清洁电量 | 有交流工程时 特高压直流工程 清洁电量 | |||
不外送 | 2025 | 218 | 284 | |||
2030 | 335 | 436 | ||||
外送100亿kW·h | 2025 | 203 | 265 | |||
2030 | 303 | 398 | ||||
外送150亿kW·h | 2025 | 190 | 254 | |||
2030 | 293 | 390 |
联 盟 | 参与 主体 | 情形描述 | ||
1 | — | 维持2025年状况,各参与主体无变化 | ||
2 | 源 | 清洁能源装机提高 | ||
3 | 网 | 特高压交流工程作用下直流工程输电能力提升 | ||
4 | 荷 | 经济发展带来负荷增长 | ||
5 | 源网 | 清洁能源装机与特高压直流工程输电能力提高,负荷无变化 | ||
6 | 源荷 | 负荷与清洁能源装机提高,特高压直流工程输电能力无变化 | ||
7 | 网荷 | 负荷与特高压直流工程输电能力提高,装机结构无变化 | ||
8 | 源网荷 | 负荷增长、清洁能源装机占比与特高压直流工程输电能力提高 |
Table 8 The combination of alliance entities under the role of networking
联 盟 | 参与 主体 | 情形描述 | ||
1 | — | 维持2025年状况,各参与主体无变化 | ||
2 | 源 | 清洁能源装机提高 | ||
3 | 网 | 特高压交流工程作用下直流工程输电能力提升 | ||
4 | 荷 | 经济发展带来负荷增长 | ||
5 | 源网 | 清洁能源装机与特高压直流工程输电能力提高,负荷无变化 | ||
6 | 源荷 | 负荷与清洁能源装机提高,特高压直流工程输电能力无变化 | ||
7 | 网荷 | 负荷与特高压直流工程输电能力提高,装机结构无变化 | ||
8 | 源网荷 | 负荷增长、清洁能源装机占比与特高压直流工程输电能力提高 |
联盟 | 参与主体 | 可提升消纳清洁电量 | ||
1 | — | — | ||
2 | 源 | 0 | ||
3 | 网 | 0 | ||
4 | 荷 | 0 | ||
5 | 源网 | 206 | ||
6 | 源荷 | 235 | ||
7 | 网荷 | 0 | ||
8 | 源网荷 | 270 |
Table 9 Different alliance absorption capabilities under the influence of networking 单位:亿kW·h
联盟 | 参与主体 | 可提升消纳清洁电量 | ||
1 | — | — | ||
2 | 源 | 0 | ||
3 | 网 | 0 | ||
4 | 荷 | 0 | ||
5 | 源网 | 206 | ||
6 | 源荷 | 235 | ||
7 | 网荷 | 0 | ||
8 | 源网荷 | 270 |
1 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
2 | 谭显东, 刘俊, 徐志成, 等. “双碳” 目标下“十四五” 电力供需形势[J]. 中国电力, 2021, 54 (5): 1- 6. |
TAN Xiandong, LIU Jun, XU Zhicheng, et al. Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54 (5): 1- 6. | |
3 | 陈怡, 田川, 曹颖, 等. 中国电力行业碳排放达峰及减排潜力分析[J]. 气候变化研究进展, 2020, 16 (5): 632- 640. |
CHEN Yi, TIAN Chuan, CAO Ying, et al. Research on peaking carbon emissions of power sector in China and the emissions mitigation analysis[J]. Climate Change Research, 2020, 16 (5): 632- 640. | |
4 | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41 (12): 3987- 4001. |
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41 (12): 3987- 4001. | |
5 | 国家发展改革委环资司召开碳排放核算专家座谈会[J]. 江西建材, 2021(04): 3. |
6 | 李春焕, 曹阿林. 铝电解工业碳排放核算方法[J]. 有色金属(冶炼部分), 2023, (3): 47- 52. |
LI Chunhuan, CAO Alin. Carbon emission accounting methods for aluminum electrolysis industry[J]. Nonferrous Metals (Extractive Metallurgy), 2023, (3): 47- 52. | |
7 |
杨本晓, 姜涛, 刘夏青. 基于投入产出法的中国造纸工业碳排放核算[J]. 中国造纸, 2023, 42 (6): 120- 125.
DOI |
YANG Benxiao, JIANG Tao, LIU Xiaqing. Carbon emission accounting of China’s paper industry based on the input-output analyses[J]. China Pulp & Paper, 2023, 42 (6): 120- 125.
DOI |
|
8 | 杨本晓, 梁思哲, 刘夏青. 基于投入产出法的中国化石能源加工业碳排放核算[J]. 环境保护, 2023, 51 (S2): 18- 21. |
YANG Benxiao, LIANG Sizhe, LIU Xiaqing. Carbon emissions in the Chinese fossil energy industries based on input output analyses[J]. Environmental Protection, 2023, 51 (S2): 18- 21. | |
9 | 李春焕, 曹阿林. 氧化铝工业碳排放核算方法[J]. 有色金属(冶炼部分), 2023, (5): 26- 31, 91. |
LI Chunhuan, CAO Alin. Carbon emission accounting methods of alumina industry[J]. Nonferrous Metals (Extractive Metallurgy), 2023, (5): 26- 31, 91. | |
10 |
朱振兴. 燃煤电厂碳排放的核算方法对比分析[J]. 中国资源综合利用, 2023, 41 (4): 165- 167.
DOI |
ZHU Zhenxing. Comparative analysis of accounting methods for carbon emissions from coal-fired power plants[J]. China Resources Comprehensive Utilization, 2023, 41 (4): 165- 167.
DOI |
|
11 |
张宁, 李姚旺, 黄俊辉, 等. 电力系统全环节碳计量方法与碳表系统[J]. 电力系统自动化, 2023, 47 (9): 2- 12.
DOI |
ZHANG Ning, LI Yaowang, HUANG Junhui, et al. Carbon measurement method and carbon meter system for whole chain of power system[J]. Automation of Electric Power Systems, 2023, 47 (9): 2- 12.
DOI |
|
12 | 汪超群, 陈懿, 文福拴, 等. 电力系统碳排放流理论改进与完善[J]. 电网技术, 2022, 46 (5): 1683- 1693. |
WANG Chaoqun, CHEN Yi, WEN Fushuan, et al. Improvement and perfection of carbon emission flow theory in power systems[J]. Power System Technology, 2022, 46 (5): 1683- 1693. | |
13 | 段力勇, 李方勇, 王庆红, 等. 电网企业碳排放核算与配额分配方法研究[J]. 能源与环保, 2018, 40 (12): 127- 131. |
DUAN Liyong, LI Fangyong, WANG Qinghong, et al. Study on carbon emission quantification and quota allocation methods of power grid enterprise[J]. China Energy and Environmental Protection, 2018, 40 (12): 127- 131. | |
14 |
SUN Y L, KANG C Q, XIA Q, et al. Analysis of transmission expansion planning considering consumption-based carbon emission accounting[J]. Applied Energy, 2017, 193, 232- 242.
DOI |
15 | 田欣, 陈来军, 李笑竹, 等. 基于主从博弈和改进Shapley值的分布式光伏社区共享储能优化运行策略[J]. 电网技术, 2023, 47 (6): 2252- 2261. |
TIAN Xin, CHEN Laijun, LI Xiaozhu, et al. Optimal scheduling for energy storage sharing among communities with photovoltaic resource based on stackelberg game and improved shapley value[J]. Power System Technology, 2023, 47 (6): 2252- 2261. | |
16 | 蒋从伟, 欧庆和, 吴仲超, 等. 基于联盟博弈的多微网共享储能联合配置与优化[J]. 中国电力, 2022, 55 (12): 11- 21. |
JIANG Congwei, OU Qinghe, WU Zhongchao, et al. Joint configuration and optimization of multi-microgrid shared energy storage based on coalition game[J]. Electric Power, 2022, 55 (12): 11- 21. | |
17 | 张爱国, 霍晓谦, 李佳佳, 等. 基于Shapley值法的再生水回用利益分配机制研究[J]. 水电能源科学, 2022, 40 (4): 58- 61. |
ZHANG Aiguo, HUO Xiaoqian, LI Jiajia, et al. Study on benefit allocation mechanism of reclaimed water reuse based on shapley value method[J]. Water Resources and Power, 2022, 40 (4): 58- 61. | |
18 | 刘振亚. 中国特高压交流输电技术创新[J]. 电网技术, 2013, 37 (3): 567- 574. |
LIU Zhenya. Innovation of UHVAC transmission technology in China[J]. Power System Technology, 2013, 37 (3): 567- 574. | |
19 | 徐菁, 李妍, 刘一鸣, 等. 基于相对靶心度的区域电网低碳发展潜力评估[J]. 中国电机工程学报, 2023, 43 (4): 1281- 1290. |
XU Jing, LI Yan, LIU Yiming, et al. Assessment of low-carbon development potential of regional power grid based on relative off-targets distance[J]. Proceedings of the CSEE, 2023, 43 (4): 1281- 1290. | |
20 |
王梓珺, 王承民, 谢宁. 基于柔性计算的高比例新能源环境下的电力电量平衡[J]. 智慧电力, 2021, 49 (8): 15- 22.
DOI |
WANG Zijun, WANG Chengmin, XIE Ning. Electric power and energy balance based on flexible computing in energy Internet with high proportion of new energy[J]. Smart Power, 2021, 49 (8): 15- 22.
DOI |
|
21 | 朱俊澎, 施凯杰, 李强, 等. 考虑输电网潮流约束的时序生产模拟及新能源消纳能力评估[J]. 电网技术, 2022, 46 (5): 1947- 1955. |
ZHU Junpeng, SHI Kaijie, LI Qiang, et al. Time series production simulation and renewable energy accommodation capacity evaluation considering transmission network power flow constraints[J]. Power System Technology, 2022, 46 (5): 1947- 1955. | |
22 | 高澈, 牛东晓, 马明, 等. 大规模新能源区域互联消纳能力分析及综合评价方法研究[J]. 中国电力, 2017, 50 (7): 56- 63. |
GAO Che, NIU Dongxiao, MA Ming, et al. Accommodating capability analysis and comprehensive assessment method of large-scale new energy areas interconnected[J]. Electric Power, 2017, 50 (7): 56- 63. | |
23 | 李湃, 王伟胜, 黄越辉, 等. 大规模新能源基地经特高压直流送出系统中长期运行方式优化方法[J]. 电网技术, 2023, 47 (1): 31- 44. |
LI Pai, WANG Weisheng, HUANG Yuehui, et al. Method on optimization of medium and long term operation modes of large-scale renewable energy power base through UHVDC system[J]. Power System Technology, 2023, 47 (1): 31- 44. | |
24 | 赵书强, 索璕, 许朝阳, 等. 考虑断面约束的多能源电力系统时序性生产模拟[J]. 电力自动化设备, 2021, 41 (7): 1- 6. |
ZHAO Shuqiang, SUO Xun, XU Zhaoyang, et al. Time series production simulation of multi-energy power system considering section constraints[J]. Electric Power Automation Equipment, 2021, 41 (7): 1- 6. | |
25 | 刘文霞, 王丽娜, 张帅, 等. 基于合作博弈论的日前自备电厂与风电发电权交易模型[J]. 电网技术, 2022, 46 (7): 2647- 2658. |
LIU Wenxia, WANG Lina, ZHANG Shuai, et al. Cooperation game theory-based model for trading of power generation rights between former captive power plants and wind power[J]. Power System Technology, 2022, 46 (7): 2647- 2658. | |
26 | 陶良彦, 王丽, 齐晓霞, 等. 武器装备体系贡献率评估灰色Shapley值模型[J]. 中国管理科学, 2024, 32 (4): 89- 96. |
TAO Liangyan, WANG Li, QI Xiaoxia, et al. Grey Shapley value model for evaluating the contribution rate of weapon and Equipment Systems[J]. Chinese Management Science, 2024, 32 (4): 89- 96. | |
27 | 陈岑, 武传涛, 康慨, 等. 基于改进Owen值法的分布式储能双层合作博弈优化策略[J]. 中国电机工程学报, 2022, 42 (11): 3924- 3936. |
CHEN Cen, WU Chuantao, KANG Kai, et al. Optimal strategy of distributed energy storage two-layer cooperative game based on improved owen-value method[J]. Proceedings of the CSEE, 2022, 42 (11): 3924- 3936. | |
28 |
王永利, 刘振, 薛露, 等. 基于多主体博弈的综合能源系统运行优化方法[J]. 控制理论与应用, 2022, 39 (3): 499- 508.
DOI |
WANG Yongli, LIU Zhen, XUE Lu, et al. Optimization method of integrated energy system operation based on multi-body game[J]. Control Theory & Applications, 2022, 39 (3): 499- 508.
DOI |
[1] | Shuai WANG, Yuehui HUANG, Yuanhong NIE, Siyang LIU. Research on Development Scenario of Renewable Energy in Receiving-End Power Grid Based on Production Simulation [J]. Electric Power, 2024, 57(5): 240-250. |
[2] | Zhuo LI, Yinzhe WANG, Lin YE, Yadi LUO, Xuri SONG, Zhenyu ZHANG. The Application of Graph Neural Networks in Power Systems from Perspective of Perception-Prediction-Optimization [J]. Electric Power, 2024, 57(12): 2-16. |
[3] | JIANG Congwei, OU Qinghe, WU Zhongchao, ZHANG Jian, YANG Shu, ZHU Jianan, AI Qian. Joint Configuration and Optimization of Multi-microgrid Shared Energy Storage Based on Coalition Game [J]. Electric Power, 2022, 55(12): 11-21. |
[4] | DAI Qian, ZHANG Jian, WU Junling, ZHANG Libo, QIN Xiaohui, ZHANG Yantao, NIU Yanqin. Differentiated Energy Storage Planning Method of Provincial Power Grids Based on Multi-partition Time Series Production Simulation [J]. Electric Power, 2022, 55(11): 21-28. |
[5] | GUO Zuogang, YU Lei, HU Yang, ZHOU Changcheng, LEI Jinyong, HE Shuai, LIU Nian. Research on Competition Strategy of Integrated Energy Service Provider under the Pool-based Market Mechanism [J]. Electric Power, 2019, 52(11): 28-34. |
[6] | GAO Changzheng, YAN Bo, WANG Jiarui, CHANG Xuefei, SUN Yue. A Fully Distributed Power Flow Algorithm with Exponentially Fast Convergence [J]. Electric Power, 2019, 52(10): 85-91. |
[7] | FANG Chaoxiong. Optimal Multiplier Method and its Application in Power Flow Calculation for AC/DC Power Grids [J]. Electric Power, 2018, 51(6): 107-112. |
[8] | DONG Cun, LI Mingjie, FAN Gaofeng, HUANG Yuehui, LI Xiaofei. Research and Application of Renewable Energy Accommodation Capability Evaluation Based on Time Series Production Simulation [J]. Electric Power, 2015, 48(12): 166-172. |
[9] | GAO Ya-jing, MIAO Hong-jia, WU Wen-chuan, JU Yun-tao, LI Fei. Comparison of Different Transformer Models and Their Influences on Power Flow of Three-Phase Distribution System [J]. Electric Power, 2014, 47(6): 49-54. |
[10] | WANG Shu-zhong, GUO Jian, SONG Dun-wen, SHI Xiu-ping, FAN Ning-ning. Power System Simulation in Peer-to-Peer Computing Environment [J]. Electric Power, 2014, 47(5): 48-52. |
[11] | LUO Yu-lei, LI Yan, WU Kun. Dynamic Global Optimal Power Flow and its Two-Stage Control Algorithm of a Power Grid Integrated with Wind Power Farms [J]. Electric Power, 2013, 46(9): 131-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||