Electric Power ›› 2024, Vol. 57 ›› Issue (2): 212-225.DOI: 10.11930/j.issn.1004-9649.202303088
• Technology and Economics • Previous Articles Next Articles
Chaoying LI1(), Qinliang TAN1,2,3(
)
Received:
2023-03-18
Accepted:
2023-06-16
Online:
2024-02-23
Published:
2024-02-28
Supported by:
Chaoying LI, Qinliang TAN. Market Trading Strategy for Thermal Power Enterprise in New Power System Based on Agent Modeling[J]. Electric Power, 2024, 57(2): 212-225.
场景 | 场景分类 | 渗透率/% | 预测误差/% | 储能 | ||||||||||
新能源 | 风电 | 光伏 | 风电 | 光伏 | ||||||||||
场景0 | 场景0.1 | 40~45 | 15~30 | 15~25 | 20 | 15 | 无 | |||||||
场景0.2 | 55~60 | 30~35 | 25~30 | 20 | 15 | 无 | ||||||||
场景0.3 | 65~70 | 35~40 | 30~35 | 20 | 15 | 无 | ||||||||
场景0.4 | 80以上 | 40~60 | 30~40 | 20 | 15 | 无 | ||||||||
场景1 | 场景1.1 | 40~45 | 15~30 | 15~25 | 8 | 5 | 无 | |||||||
场景1.2 | 55~60 | 30~35 | 25~30 | 8 | 5 | 无 | ||||||||
场景1.3 | 65~70 | 35~40 | 30~35 | 8 | 5 | 无 | ||||||||
场景1.4 | 80以上 | 40~60 | 30~40 | 8 | 5 | 无 | ||||||||
场景2 | 场景2.1 | 40~45 | 15~30 | 15~25 | 20 | 15 | 有 | |||||||
场景2.2 | 55~60 | 30~35 | 25~30 | 20 | 15 | 有 | ||||||||
场景2.3 | 65~70 | 35~40 | 30~35 | 20 | 15 | 有 | ||||||||
场景2.4 | 80以上 | 40~60 | 30~40 | 20 | 15 | 有 |
Table 1 Scenario setting
场景 | 场景分类 | 渗透率/% | 预测误差/% | 储能 | ||||||||||
新能源 | 风电 | 光伏 | 风电 | 光伏 | ||||||||||
场景0 | 场景0.1 | 40~45 | 15~30 | 15~25 | 20 | 15 | 无 | |||||||
场景0.2 | 55~60 | 30~35 | 25~30 | 20 | 15 | 无 | ||||||||
场景0.3 | 65~70 | 35~40 | 30~35 | 20 | 15 | 无 | ||||||||
场景0.4 | 80以上 | 40~60 | 30~40 | 20 | 15 | 无 | ||||||||
场景1 | 场景1.1 | 40~45 | 15~30 | 15~25 | 8 | 5 | 无 | |||||||
场景1.2 | 55~60 | 30~35 | 25~30 | 8 | 5 | 无 | ||||||||
场景1.3 | 65~70 | 35~40 | 30~35 | 8 | 5 | 无 | ||||||||
场景1.4 | 80以上 | 40~60 | 30~40 | 8 | 5 | 无 | ||||||||
场景2 | 场景2.1 | 40~45 | 15~30 | 15~25 | 20 | 15 | 有 | |||||||
场景2.2 | 55~60 | 30~35 | 25~30 | 20 | 15 | 有 | ||||||||
场景2.3 | 65~70 | 35~40 | 30~35 | 20 | 15 | 有 | ||||||||
场景2.4 | 80以上 | 40~60 | 30~40 | 20 | 15 | 有 |
节点 | 新能源装机 | 火电机组装机 | 输电线路容量 | |||
6 | 6000 | 33000 | 15000 | |||
12 | 25000 | 2000 | 20000 | |||
15 | 5500 | 13000 | 27500 | |||
28 | 0 | 6000 | 17500 |
Table 2 Bus attributes 单位:MW
节点 | 新能源装机 | 火电机组装机 | 输电线路容量 | |||
6 | 6000 | 33000 | 15000 | |||
12 | 25000 | 2000 | 20000 | |||
15 | 5500 | 13000 | 27500 | |||
28 | 0 | 6000 | 17500 |
机组 编号 | 所在 节点 | 机组 容量/ MW | 最小 技术 出力/ % | 启停成本/ (万元• (MW•h)–1) | 发电运行 成本系数 | 三段非递 减报价/ (元•(MW•h)–1) | ||||||||||||
a | b | |||||||||||||||||
火电0 | 15 | 2000 | 50 | 0.1080 | 0.142 | –120.000 | 392 | 540 | 688 | |||||||||
火电1 | 15 | 5500 | 50 | 0.0990 | 0.090 | –195.380 | 385 | 551 | 717 | |||||||||
火电2 | 15 | 5500 | 50 | 0.1010 | 0.080 | –110.620 | 412 | 561 | 710 | |||||||||
火电3 | 28 | 6000 | 40 | 0.1040 | 0.050 | 67.250 | 425 | 568 | 711 | |||||||||
火电26 | 6 | 6000 | 40 | 0.1030 | 0.060 | 15.820 | 358 | 495 | 632 | |||||||||
火电27 | 6 | 6000 | 40 | 0.0920 | 0.070 | 38.100 | 428 | 584 | 740 | |||||||||
火电28 | 6 | 3000 | 50 | 0.1010 | 0.117 | 21.000 | 429 | 546 | 662 | |||||||||
火电29 | 6 | 6000 | 40 | 0.0930 | 0.060 | 29.250 | 423 | 580 | 737 | |||||||||
火电39 | 6 | 6000 | 30 | 0.0310 | 0.020 | 299.461 | 397 | 451 | 506 | |||||||||
火电40 | 6 | 6000 | 30 | 0.0325 | 0.020 | 337.806 | 448 | 510 | 572 | |||||||||
火电44 | 12 | 2000 | 30 | 0.0318 | 0.060 | 322.530 | 423 | 479 | 536 |
Table 3 Parameters of thermal power units
机组 编号 | 所在 节点 | 机组 容量/ MW | 最小 技术 出力/ % | 启停成本/ (万元• (MW•h)–1) | 发电运行 成本系数 | 三段非递 减报价/ (元•(MW•h)–1) | ||||||||||||
a | b | |||||||||||||||||
火电0 | 15 | 2000 | 50 | 0.1080 | 0.142 | –120.000 | 392 | 540 | 688 | |||||||||
火电1 | 15 | 5500 | 50 | 0.0990 | 0.090 | –195.380 | 385 | 551 | 717 | |||||||||
火电2 | 15 | 5500 | 50 | 0.1010 | 0.080 | –110.620 | 412 | 561 | 710 | |||||||||
火电3 | 28 | 6000 | 40 | 0.1040 | 0.050 | 67.250 | 425 | 568 | 711 | |||||||||
火电26 | 6 | 6000 | 40 | 0.1030 | 0.060 | 15.820 | 358 | 495 | 632 | |||||||||
火电27 | 6 | 6000 | 40 | 0.0920 | 0.070 | 38.100 | 428 | 584 | 740 | |||||||||
火电28 | 6 | 3000 | 50 | 0.1010 | 0.117 | 21.000 | 429 | 546 | 662 | |||||||||
火电29 | 6 | 6000 | 40 | 0.0930 | 0.060 | 29.250 | 423 | 580 | 737 | |||||||||
火电39 | 6 | 6000 | 30 | 0.0310 | 0.020 | 299.461 | 397 | 451 | 506 | |||||||||
火电40 | 6 | 6000 | 30 | 0.0325 | 0.020 | 337.806 | 448 | 510 | 572 | |||||||||
火电44 | 12 | 2000 | 30 | 0.0318 | 0.060 | 322.530 | 423 | 479 | 536 |
机组编号 | 场景0.1 | 场景0.2 | 场景0.3 | 场景0.4 | ||||
火电0 | 1.13 | 1.13 | 1.09 | 1.06 | ||||
火电1 | 1.50 | 1.15 | 1.10 | 1.00 | ||||
火电2 | 1.50 | 1.07 | 1.11 | 1.27 | ||||
火电3 | 1.50 | 1.06 | 1.07 | 1.07 | ||||
火电26 | 1.50 | 1.00 | 1.00 | 1.00 | ||||
火电27 | 1.50 | 1.01 | 0 | 0 | ||||
火电28 | 1.50 | 1.00 | 0 | 0 | ||||
火电29 | 1.50 | 1.02 | 0 | 0 | ||||
火电39 | 1.00 | 1.00 | 1.00 | 0 | ||||
火电40 | 1.00 | 0 | 0 | 0 | ||||
火电44 | 1.21 | 0 | 0 | 0 |
Table 4 The best offer for the units under scenario 0
机组编号 | 场景0.1 | 场景0.2 | 场景0.3 | 场景0.4 | ||||
火电0 | 1.13 | 1.13 | 1.09 | 1.06 | ||||
火电1 | 1.50 | 1.15 | 1.10 | 1.00 | ||||
火电2 | 1.50 | 1.07 | 1.11 | 1.27 | ||||
火电3 | 1.50 | 1.06 | 1.07 | 1.07 | ||||
火电26 | 1.50 | 1.00 | 1.00 | 1.00 | ||||
火电27 | 1.50 | 1.01 | 0 | 0 | ||||
火电28 | 1.50 | 1.00 | 0 | 0 | ||||
火电29 | 1.50 | 1.02 | 0 | 0 | ||||
火电39 | 1.00 | 1.00 | 1.00 | 0 | ||||
火电40 | 1.00 | 0 | 0 | 0 | ||||
火电44 | 1.21 | 0 | 0 | 0 |
机组编号 | 场景0.1-1 | 场景0.1-2 | 场景0.2-1 | 场景0.2-2 | 场景0.3-1 | 场景0.3-2 | 场景0.4-1 | 场景0.4-2 | ||||||||
火电0 | 13498968 | 16412115 | 12468971 | 14442833 | 11485019 | 12503871 | 10519630 | 11126714 | ||||||||
火电1 | 26884548 | 28410845 | 26044836 | 28647191 | 23517086 | 24315077 | 21640173 | 22670703 | ||||||||
火电2 | 22513252 | 24368714 | 21720081 | 24312298 | 19864431 | 20578768 | 17311122 | 17983108 | ||||||||
火电3 | 14796559 | 19154757 | 13847268 | 16991038 | 11306283 | 13875130 | 9578161 | 10748581 | ||||||||
火电26 | 9139712 | 10207668 | 3094776 | 4405287 | 2541327 | 3057613 | 1793510 | 1903897 | ||||||||
火电27 | 5914921 | 7105599 | 545607 | 3682438 | 0 | 0 | 0 | 0 | ||||||||
火电28 | 3576000 | 4295197 | 269732 | 922590 | 0 | 0 | 0 | 0 | ||||||||
火电29 | 6387290 | 7643048 | 1006129 | 2074372 | 0 | 0 | 0 | 0 | ||||||||
火电39 | 2542630 | 3839581 | 924009 | 1040011 | 910528 | 978536 | 0 | 0 | ||||||||
火电40 | 1098958 | 2227463 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
火电44 | 4023543 | 4398309 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 5 Unit profit of scenario 0 before and after reinforcement learning 单位:元
机组编号 | 场景0.1-1 | 场景0.1-2 | 场景0.2-1 | 场景0.2-2 | 场景0.3-1 | 场景0.3-2 | 场景0.4-1 | 场景0.4-2 | ||||||||
火电0 | 13498968 | 16412115 | 12468971 | 14442833 | 11485019 | 12503871 | 10519630 | 11126714 | ||||||||
火电1 | 26884548 | 28410845 | 26044836 | 28647191 | 23517086 | 24315077 | 21640173 | 22670703 | ||||||||
火电2 | 22513252 | 24368714 | 21720081 | 24312298 | 19864431 | 20578768 | 17311122 | 17983108 | ||||||||
火电3 | 14796559 | 19154757 | 13847268 | 16991038 | 11306283 | 13875130 | 9578161 | 10748581 | ||||||||
火电26 | 9139712 | 10207668 | 3094776 | 4405287 | 2541327 | 3057613 | 1793510 | 1903897 | ||||||||
火电27 | 5914921 | 7105599 | 545607 | 3682438 | 0 | 0 | 0 | 0 | ||||||||
火电28 | 3576000 | 4295197 | 269732 | 922590 | 0 | 0 | 0 | 0 | ||||||||
火电29 | 6387290 | 7643048 | 1006129 | 2074372 | 0 | 0 | 0 | 0 | ||||||||
火电39 | 2542630 | 3839581 | 924009 | 1040011 | 910528 | 978536 | 0 | 0 | ||||||||
火电40 | 1098958 | 2227463 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||||
火电44 | 4023543 | 4398309 | 0 | 0 | 0 | 0 | 0 | 0 |
机组编号 | 场景1.1 | 场景1.2 | 场景1.3 | 场景1.4 | ||||
火电0 | 1.07 | 1.07 | 1.04 | 1.03 | ||||
火电1 | 1.50 | 1.15 | 1.10 | 1.00 | ||||
火电2 | 1.50 | 1.10 | 1.17 | 1.28 | ||||
火电3 | 1.50 | 1.06 | 1.07 | 1.09 | ||||
火电26 | 1.50 | 1.00 | 1.00 | 1.00 | ||||
火电27 | 1.50 | 1.05 | 0 | 0 | ||||
火电28 | 1.50 | 1.00 | 0 | 0 | ||||
火电29 | 1.50 | 1.05 | 0 | 0 | ||||
火电39 | 1.00 | 0 | 1.00 | 0 | ||||
火电40 | 1.00 | 0 | 0 | 0 | ||||
火电44 | 1.19 | 0 | 0 | 0 |
Table 6 The best offer for the units under scenario 1
机组编号 | 场景1.1 | 场景1.2 | 场景1.3 | 场景1.4 | ||||
火电0 | 1.07 | 1.07 | 1.04 | 1.03 | ||||
火电1 | 1.50 | 1.15 | 1.10 | 1.00 | ||||
火电2 | 1.50 | 1.10 | 1.17 | 1.28 | ||||
火电3 | 1.50 | 1.06 | 1.07 | 1.09 | ||||
火电26 | 1.50 | 1.00 | 1.00 | 1.00 | ||||
火电27 | 1.50 | 1.05 | 0 | 0 | ||||
火电28 | 1.50 | 1.00 | 0 | 0 | ||||
火电29 | 1.50 | 1.05 | 0 | 0 | ||||
火电39 | 1.00 | 0 | 1.00 | 0 | ||||
火电40 | 1.00 | 0 | 0 | 0 | ||||
火电44 | 1.19 | 0 | 0 | 0 |
机组编号 | 场景2.1 | 场景2.2 | 场景2.3 | 场景2.3 | ||||
火电0 | 1.04 | 1.06 | 1.04 | 1.04 | ||||
火电1 | 1.15 | 1.30 | 1.08 | 1.06 | ||||
火电2 | 1.28 | 1.28 | 1.07 | 1.06 | ||||
火电3 | 1.12 | 1.26 | 1.06 | 1.05 | ||||
火电26 | 1.08 | 1.00 | 1.00 | 1.00 | ||||
火电27 | 1.02 | 1.00 | 0 | 0 | ||||
火电28 | 1.05 | 1.00 | 0 | 0 | ||||
火电29 | 1.00 | 1.00 | 0 | 0 | ||||
火电39 | 1.00 | 1.00 | 1.00 | 0 | ||||
火电40 | 1.00 | 0 | 0 | 0 | ||||
火电44 | 1.11 | 0 | 0 | 0 |
Table 7 The best offer for the units under scenario 2
机组编号 | 场景2.1 | 场景2.2 | 场景2.3 | 场景2.3 | ||||
火电0 | 1.04 | 1.06 | 1.04 | 1.04 | ||||
火电1 | 1.15 | 1.30 | 1.08 | 1.06 | ||||
火电2 | 1.28 | 1.28 | 1.07 | 1.06 | ||||
火电3 | 1.12 | 1.26 | 1.06 | 1.05 | ||||
火电26 | 1.08 | 1.00 | 1.00 | 1.00 | ||||
火电27 | 1.02 | 1.00 | 0 | 0 | ||||
火电28 | 1.05 | 1.00 | 0 | 0 | ||||
火电29 | 1.00 | 1.00 | 0 | 0 | ||||
火电39 | 1.00 | 1.00 | 1.00 | 0 | ||||
火电40 | 1.00 | 0 | 0 | 0 | ||||
火电44 | 1.11 | 0 | 0 | 0 |
机组编号 | 场景2.1 | 场景2.2 | 场景2.3 | 场景2.4 | ||||
火电0 | 14950384 | 13152182 | 10376831 | 9263549 | ||||
火电1 | 29354504 | 25468649 | 20315126 | 18820701 | ||||
火电2 | 24546624 | 21205219 | 17576711 | 14625036 | ||||
火电3 | 17440296 | 15469392 | 11875931 | 9701874 | ||||
火电26 | 10581533 | 5159517 | 2758693 | 2406591 | ||||
火电27 | 7293469 | 3528564 | 0 | 0 | ||||
火电28 | 4435634 | 1445960 | 0 | 0 | ||||
火电29 | 7788516 | 2885786 | 0 | 0 | ||||
火电39 | 2752799 | 738480 | 377546 | 0 | ||||
火电40 | 1233999 | 0 | 0 | 0 | ||||
火电44 | 4912170 | 0 | 0 | 0 |
Table 8 Unit profit of scenario 2 after reinforcement learning 单位:元
机组编号 | 场景2.1 | 场景2.2 | 场景2.3 | 场景2.4 | ||||
火电0 | 14950384 | 13152182 | 10376831 | 9263549 | ||||
火电1 | 29354504 | 25468649 | 20315126 | 18820701 | ||||
火电2 | 24546624 | 21205219 | 17576711 | 14625036 | ||||
火电3 | 17440296 | 15469392 | 11875931 | 9701874 | ||||
火电26 | 10581533 | 5159517 | 2758693 | 2406591 | ||||
火电27 | 7293469 | 3528564 | 0 | 0 | ||||
火电28 | 4435634 | 1445960 | 0 | 0 | ||||
火电29 | 7788516 | 2885786 | 0 | 0 | ||||
火电39 | 2752799 | 738480 | 377546 | 0 | ||||
火电40 | 1233999 | 0 | 0 | 0 | ||||
火电44 | 4912170 | 0 | 0 | 0 |
1 |
HAO S Y. A study of basic bidding strategy in clearing pricing auctions[J]. IEEE Transactions on Power Systems, 2000, 15 (3): 975- 980.
DOI |
2 | TSAY M T, GOW H J. Congestion influence on bidding strategies in an electricity market[C]//2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific. Dalian, China. IEEE, 2005: 1–6. |
3 |
SINGH K, PADHY N P, SHARMA J. Influence of price responsive demand shifting bidding on congestion and LMP in pool-based day-ahead electricity markets[J]. IEEE Transactions on Power Systems, 2011, 26 (2): 886- 896.
DOI |
4 | PRABAVATHI M, GNANADASS R. Energy bidding strategies for restructured electricity market[J]. International Journal of Electrical Power & Energy Systems, 2015, 64, 956- 966. |
5 | 蒲勇健, 余沙, 黄毅祥. 基于独立售电公司双角色的Stackelberg博弈模型分析[J]. 中国管理科学, 2022, 30 (12): 317- 326. |
PU Yongjian, YU Sha, HUANG Yixiang, et al. A Stackelberg game model based on the dual role of independent electricity sale company[J]. Chinese Journal of Management Science, 2022, 30 (12): 317- 326. | |
6 | 李章溢, 马昕, 裴玮, 等. 含用户聚合代理的工业园区需求响应主从博弈机制与策略[J]. 中国电力, 2020, 53 (8): 40- 49. |
LI Zhangyi, MA Xin, PEI Wei, et al. Leader-follower game mechanism and strategy of industrial park demand response with user aggregator[J]. Electric Power, 2020, 53 (8): 40- 49. | |
7 | 田福银, 马骏, 王灿, 等. 基于双层主从博弈的综合能源系统多主体低碳经济运行策略[J]. 中国电力, 2022, 55 (11): 184- 193. |
TIAN Fuyin, MA Jun, WANG Can, et al. Multi-agent low-carbon and economy operation strategy of integrated energy system based on bi-level master-slave game[J]. Electric Power, 2022, 55 (11): 184- 193. | |
8 | 鲁鹏, 冯春贤, 武伟鸣, 等. 园区能源供需价量双层Stackelberg博弈模型[J]. 中国电力, 2022, 55 (6): 74- 79. |
LU Peng, FENG Chunxian, WU Weiming, et al. Two-layer Stackelberg game model for energy supply and demand in the park[J]. Electric Power, 2022, 55 (6): 74- 79. | |
9 | 崔明勇, 宣名阳, 卢志刚, 等. 基于合作博弈的多综合能源服务商运行优化策略[J]. 中国电机工程学报, 2022, 42 (10): 3548- 3564. |
CUI Mingyong, XUAN Mingyang, LU Zhigang, et al. Operation optimization strategy of multi integrated energy service companies based on cooperative game theory[J]. Proceedings of the CSEE, 2022, 42 (10): 3548- 3564. | |
10 |
武昭原, 周明, 姚尚润, 等. 基于合作博弈论的风储联合参与现货市场优化运行策略[J]. 电网技术, 2019, 43 (8): 2815- 2824.
DOI |
WU Zhaoyuan, ZHOU Ming, YAO Shangrun, et al. Optimization operation strategy of wind-storage coalition in spot market based on cooperative game theory[J]. Power System Technology, 2019, 43 (8): 2815- 2824.
DOI |
|
11 | EPSTEIN J M. Generative social science: studies in agent-based computational modeling[M]. Princeton, NJ: Princeton University Press, 2006. |
12 |
RINGLER P, KELES D, FICHTNER W. Agent-based modelling and simulation of smart electricity grids and markets - a literature review[J]. Renewable and Sustainable Energy Reviews, 2016, 57, 205- 215.
DOI |
13 |
SANTOS G, PINTO T, MORAIS H, et al. Multi-agent simulation of competitive electricity markets: autonomous systems cooperation for European market modeling[J]. Energy Conversion and Management, 2015, 99, 387- 399.
DOI |
14 |
ALIABADI D E, KAYA M, ŞAHIN G. An agent-based simulation of power generation company behavior in electricity markets under different market-clearing mechanisms[J]. Energy Policy, 2017, 100, 191- 205.
DOI |
15 | HAGHIGHAT H, SEIFI H, KIAN A R. Pay-as-bid versus marginal pricing: the role of suppliers strategic behavior[J]. International Journal of Electrical Power & Energy Systems, 2012, 42 (1): 350- 358. |
16 |
KELES D, BUBLITZ A, ZIMMERMANN F, et al. Analysis of design options for the electricity market: the German case[J]. Applied Energy, 2016, 183, 884- 901.
DOI |
17 |
BARAZZA E, STRACHAN N. The impact of heterogeneous market players with bounded-rationality on the electricity sector low-carbon transition[J]. Energy Policy, 2020, 138, 111274.
DOI |
18 | WANG J H, BOTTERUD A, CONZELMANN G, et al. Market power analysis in the EEX electricity market: an agent-based simulation approach[C]//2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, PA. IEEE, 2008: 1–8. |
19 |
袁唯淋, 罗俊仁, 陆丽娜, 等. 智能博弈对抗方法: 博弈论与强化学习综合视角对比分析[J]. 计算机科学, 2022, 49 (8): 191- 204.
DOI |
YUAN Weilin, LUO Junren, LU Lina, et al. Methods in adversarial intelligent game: a comparative analysis from perspective of game theory and reinforcement learning[J]. Computer Science, 2022, 49 (8): 191- 204.
DOI |
|
20 |
PURUSHOTHAMAN K, CHANDRAKALA V. Roth-erev reinforcement learning approach for smart generator bidding towards long term electricity market operation using agent based dynamic modeling[J]. Electric Power Components and Systems, 2020, 48 (3): 256- 267.
DOI |
21 |
ESMAEILI ALIABADI D, KAYA M, SAHIN G. Competition, risk and learning in electricity markets: an agent-based simulation study[J]. Applied Energy, 2017, 195, 1000- 1011.
DOI |
22 |
孙庆凯, 王小君, 王怡, 等. 基于多智能体Nash-Q强化学习的综合能源市场交易优化决策[J]. 电力系统自动化, 2021, 45 (16): 124- 133.
DOI |
SUN Qingkai, WANG Xiaojun, WANG Yi, et al. Optimal trading decision-making for integrated energy market based on multi-agent nash-Q reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45 (16): 124- 133.
DOI |
|
23 |
LIU D N, WANG W Y, WANG L X, et al. Dynamic pricing strategy of electric vehicle aggregators based on DDPG reinforcement learning algorithm[J]. IEEE Access, 2021, 9, 21556- 21566.
DOI |
24 |
LIANG Y C, GUO C L, DING Z H, et al. Agent-based modeling in electricity market using deep deterministic policy gradient algorithm[J]. IEEE Transactions on Power Systems, 2020, 35 (6): 4180- 4192.
DOI |
25 |
周斌, 崔雪, 邹晨露, 等. 基于合作博弈的风水火联合运营研究[J]. 电测与仪表, 2019, 56 (6): 69- 75.
DOI |
ZHOU Bin, CUI Xue, ZOU Chenlu, et al. Research on wind-hydro-thermal power joint operation based on cooperative game theory[J]. Electrical Measurement & Instrumentation, 2019, 56 (6): 69- 75.
DOI |
|
26 | 陆承宇, 江婷, 邓晖, 等. 基于合作博弈的含清洁能源发电商参与现货市场竞价策略及收益分配[J]. 电力建设, 2020, 41 (12): 150- 158. |
LU Chengyu, JIANG Ting, DENG Hui, et al. Bidding strategy and profit distribution of power generation company with clean energy in spot market based on cooperative game theory[J]. Electric Power Construction, 2020, 41 (12): 150- 158. | |
27 | 邢通. 大规模风电参与电力市场交易机制及优化模型研究[D]. 北京: 华北电力大学, 2020. |
XING Tong. The research on the transaction mechanism and optimization mode for large scale wind power participating in the power market. [D]. Beijing: North China Electric Power University, 2020. | |
28 |
袁桂丽, 贾新潮, 房方, 等. 虚拟电厂源荷双侧热电联合随机优化调度[J]. 电网技术, 2020, 44 (8): 2932- 2940.
DOI |
YUAN Guili, JIA Xinchao, FANG Fang, et al. Joint stochastic optimal scheduling of heat and power considering source and load sides of virtual power plant[J]. Power System Technology, 2020, 44 (8): 2932- 2940.
DOI |
|
29 |
肖云鹏, 张兰, 张轩, 等. 包含独立储能的现货电能量与调频辅助服务市场出清协调机制[J]. 中国电机工程学报, 2020, 40 (S1): 167- 180.
DOI |
XIAO Yunpeng, ZHANG Lan, ZHANG Xuan, et al. The coordinated market clearing mechanism for spot electric energy and regulating ancillary service incorporating independent energy storage resources[J]. Proceedings of the CSEE, 2020, 40 (S1): 167- 180.
DOI |
|
30 | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. 2015: arXiv: 1509.02971.https://arxiv.org/abs/1509.02971.pdf. |
31 |
ZHUO Z Y, ZHANG N, YANG J W, et al. Transmission expansion planning test system for AC/DC hybrid grid with high variable renewable energy penetration[J]. IEEE Transactions on Power Systems, 2020, 35 (4): 2597- 2608.
DOI |
[1] | ZHAO Tong, LI Xuesong, ZHOU Hao, DING Yu, YANG Bin, WANG Wentao, WANG Peng. Electricity Carbon Coupled Market Modeling Method and Market Optimization Mechanism Based on Dynamic Carbon Emission Intensity [J]. Electric Power, 2025, 58(4): 31-43. |
[2] | ZHOU Feihang, WANG Hao, WANG Haili, WANG Meng, JIN Yaojie, LI Zhongchun, ZHANG Zhongde, WANG Peng. Multi-entity Behaviors in Electricity-Carbon-Green Certificate Coupled Markets Based on Multi-agent Reinforcement Learning [J]. Electric Power, 2025, 58(4): 44-55. |
[3] | WANG Guanchao, HUO Yuchong, LI Qun, LI Qiang. Power Optimization of Wind Farms Based on Improved Jensen Model and Deep Reinforcement Learning [J]. Electric Power, 2025, 58(4): 78-89. |
[4] | Yi ZENG, Yi ZHOU, Jixiang LU, Liangcai ZHOU, Ningkai TANG, Hong LI. Voltage Control Based on Multi-Agent Safe Deep Reinforcement Learning [J]. Electric Power, 2025, 58(2): 111-117. |
[5] | Zhengnan GAO, Nan JIANG, Qixin CHEN, Jiang XU, Haili WANG, Li XIN, Qinggui XU. Construction Experience of German Electricity Market Adapting to Energy Transition [J]. Electric Power, 2024, 57(6): 204-214. |
[6] | Wenlong LI, Yun ZHOU, Ling LUO, Tiantian CHEN, Donghan FENG. Carbon Allocation Throughout the Entire Process of Electric Energy Trading Considering Spot Trading [J]. Electric Power, 2024, 57(5): 99-112. |
[7] | Hu TAN, Xiaoliang WANG, Tingting XU, Ke ZHAO, Lianchao SU, Wenyu ZHANG, Zheng XIN. Economic and Technological Optimization of Hybrid Rural Microgrid with Wind, PV, Biogas, Storage, AC, and DC [J]. Electric Power, 2024, 57(3): 27-33. |
[8] | Hao JIAO, Yanyan YIN, Chen WU, Jian LIU, Chunlei XU, Xian XU, Guoqiang SUN. Coordinated Optimization of Active and Reactive Power of Active Distribution Network Based on Safety Reinforcement Learning [J]. Electric Power, 2024, 57(3): 43-50. |
[9] | Juanjuan GUO, Di SHEN, Pu TONG, Kun YAN, Xiaofan ZHANG, Fang HE. Economic Evaluation Method and Parameter Optimization for Third-Generation Nuclear Power in China [J]. Electric Power, 2024, 57(3): 206-212, 223. |
[10] | Zhiyuan GAO, Weijin ZHUANG, Jian GENG, Feng LI, Bike XUE, Xiaolei YANG, Keju BAI. The Regulation Mechanism of Electricity Market on Load Side Resources Based on the Economic Person Hypothesis [J]. Electric Power, 2024, 57(3): 213-223. |
[11] | Zhongkai YI, Langbo HOU, Ying XU, Yongfeng WU, Zhimin LI, Junfei WU, Teng FENG, Liu HAN. Aggregation and Operation Key Technology of Virtual Power Plant with Flexible Resources in Electricity Market Environment: Review [J]. Electric Power, 2024, 57(12): 82-96. |
[12] | Songping XUE, Dequan GAO, Ziyan ZHAO, Yuqian LIN, Zejing GUANG, Dawei ZHANG. Routing Algorithm for Power Communication Networks Based on Serivce Differentiated Transmission Requirements [J]. Electric Power, 2024, 57(11): 183-190. |
[13] | Chao ZHANG, Dongmei ZHAO, Yu JI, Ying ZHANG. Real Time Optimal Dispatch of Virtual Power Plant Based on Improved Deep Q Network [J]. Electric Power, 2024, 57(1): 91-100. |
[14] | WU Mingxing, WANG Ning, WANG Haohao, ZHU Tao, CHEN Qing, WANG Xuanding, YANG Saite. A Decomposition and Optimization Method for Government-Authorized Contracts in a Dual-track Spot Electricity Market Based on Game Equilibrium [J]. Electric Power, 2023, 56(9): 15-26. |
[15] | REN Jing, GAO Min, CHENG Song, ZHANG Xiaodong, LIU Youbo. A Balance Method for Power Supply-Demand Adapting to High Uncertainties of Renewable Energy in Northwest Power Grid [J]. Electric Power, 2023, 56(9): 66-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||