Electric Power ›› 2024, Vol. 57 ›› Issue (1): 209-218.DOI: 10.11930/j.issn.1004-9649.202306024
• Clean and Efficient Power Generation Technology for Carbon Peak and Carbon Neutrality • Previous Articles Next Articles
Jian LIANG1(), Meng WANG2, Yaxin YANG1, Yang HU3, Erren YAO3(
)
Received:
2023-06-07
Accepted:
2023-09-05
Online:
2024-01-23
Published:
2024-01-28
Supported by:
Jian LIANG, Meng WANG, Yaxin YANG, Yang HU, Erren YAO. Thermodynamic Analysis of CCHP with Compressed Air Energy Storage and Enhanced Geothermal Technology[J]. Electric Power, 2024, 57(1): 209-218.
设备 | 耗费㶲 | 收益㶲 | 㶲损失 | |||
压缩机1 | ||||||
换热器1 | ||||||
压缩机2 | ||||||
换热器2 | ||||||
膨胀机1 | ||||||
换热器3 | ||||||
膨胀机2 | ||||||
换热器4 | ||||||
泵 | ||||||
储气室 |
Table 1 Exergy balance for each component of the system
设备 | 耗费㶲 | 收益㶲 | 㶲损失 | |||
压缩机1 | ||||||
换热器1 | ||||||
压缩机2 | ||||||
换热器2 | ||||||
膨胀机1 | ||||||
换热器3 | ||||||
膨胀机2 | ||||||
换热器4 | ||||||
泵 | ||||||
储气室 |
设备 | 投资成本方程 | |
压缩机 | ||
换热器 | ||
膨胀机 | ||
泵 | ||
储气室 |
Table 2 Purchased equipment cost for each component of the system
设备 | 投资成本方程 | |
压缩机 | ||
换热器 | ||
膨胀机 | ||
泵 | ||
储气室 |
设备 | 文献值/kW | 计算值/kW | 相对误差/% | |||
压缩机 | 274.50[ | 277.60 | 1.13 | |||
膨胀机 | 219.10[ | 221.20 | 0.96 | |||
换热器 | 533.40[ | 537.40 | 0.75 | |||
泵 | 180.00[ | 182.00 | 1.11 |
Table 3 Model validation for each component of the system
设备 | 文献值/kW | 计算值/kW | 相对误差/% | |||
压缩机 | 274.50[ | 277.60 | 1.13 | |||
膨胀机 | 219.10[ | 221.20 | 0.96 | |||
换热器 | 533.40[ | 537.40 | 0.75 | |||
泵 | 180.00[ | 182.00 | 1.11 |
参数 | 数值 | |
环境压力 P0/Pa | 1013025 | |
环境温度 T0/℃ | 25 | |
储气装置压力范围 (Pac,min—Pac,max)/Pa | 2533125-60781500 | |
空气绝热系数 γ | 1.4 | |
储气温度 Tac/℃ | 25 | |
埋管换热器出口温度 T13/℃ | 120 | |
压缩机等熵效率 ηc/% | 80 | |
压缩机压比 εc | 40 | |
膨胀机等熵效率 ηt/% | 85 | |
膨胀机膨胀比 εt | 25 | |
冷却水温度 Tc/℃ | 25 | |
换热器节点温差 ΔThex/℃ | 5 |
Table 4 The input operating parameters of the system
参数 | 数值 | |
环境压力 P0/Pa | 1013025 | |
环境温度 T0/℃ | 25 | |
储气装置压力范围 (Pac,min—Pac,max)/Pa | 2533125-60781500 | |
空气绝热系数 γ | 1.4 | |
储气温度 Tac/℃ | 25 | |
埋管换热器出口温度 T13/℃ | 120 | |
压缩机等熵效率 ηc/% | 80 | |
压缩机压比 εc | 40 | |
膨胀机等熵效率 ηt/% | 85 | |
膨胀机膨胀比 εt | 25 | |
冷却水温度 Tc/℃ | 25 | |
换热器节点温差 ΔThex/℃ | 5 |
决策变量 | 下限 | 上限 | ||
压缩机压比 | 40 | 60 | ||
压缩机效率/% | 75 | 95 | ||
膨胀机进口温度/℃ | 105 | 135 | ||
膨胀机膨胀比 | 25 | 45 | ||
膨胀机效率/% | 75 | 95 | ||
换热器温差/℃ | 3 | 21 |
Table 5 The range of decision variables in the multi-objective optimization
决策变量 | 下限 | 上限 | ||
压缩机压比 | 40 | 60 | ||
压缩机效率/% | 75 | 95 | ||
膨胀机进口温度/℃ | 105 | 135 | ||
膨胀机膨胀比 | 25 | 45 | ||
膨胀机效率/% | 75 | 95 | ||
换热器温差/℃ | 3 | 21 |
决策变量 | 取值 | |
压缩机压比 | 57.47 | |
压缩机效率/% | 94.24 | |
膨胀机进口温度/℃ | 130.06 | |
膨胀机膨胀比 | 43.95 | |
膨胀机效率/% | 94.79 | |
换热器温差/℃ | 3.67 |
Table 6 Optimal solution of decision variable
决策变量 | 取值 | |
压缩机压比 | 57.47 | |
压缩机效率/% | 94.24 | |
膨胀机进口温度/℃ | 130.06 | |
膨胀机膨胀比 | 43.95 | |
膨胀机效率/% | 94.79 | |
换热器温差/℃ | 3.67 |
1 |
ALIRAHMI S M, RAZMI A R, ARABKOOHSAR A. Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems[J]. Renewable and Sustainable Energy Reviews, 2021, 142, 110850.
DOI |
2 |
BAZMI A A, ZAHEDI G. Sustainable energy systems: role of optimization modeling techniques in power generation and supply—a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (8): 3480- 3500.
DOI |
3 | 王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述[J]. 储能科学与技术, 2022, 11 (5): 1575- 1582. |
WANG Su, XIAO Liye, TANG Wenbing, et al. Review of new gravity energy storage[J]. Energy Storage Science and Technology, 2022, 11 (5): 1575- 1582. | |
4 |
OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: components and operating parameters - A review[J]. Journal of Energy Storage, 2021, 34, 102000.
DOI |
5 | 刘联涛, 刘飞, 吉平, 等. 储能参与新能源消纳的优化控制策略[J]. 中国电力, 2023, 56 (3): 137- 143. |
LIU Liantao, LIU Fei, JI Ping, et al. Research on optimal control strategy of energy storage for improving new energy consumption[J]. Electric Power, 2023, 56 (3): 137- 143. | |
6 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
7 |
MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage; technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33, 532- 545.
DOI |
8 |
CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: a critical review[J]. Progress in Natural Science, 2009, 19 (3): 291- 312.
DOI |
9 |
YAO E R, WANG H R, WANG L G, et al. Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage[J]. Energy Conversion and Management, 2016, 118, 377- 386.
DOI |
10 |
黄恩和, 宋传教, 金庆辉, 等. 基于储热介质和排气温度的绝热式压缩空气储能系统优化设计[J]. 热力发电, 2021, 50 (8): 39- 46.
DOI |
HUANG Enhe, SONG Chuanjiao, JIN Qinghui, et al. Optimal design of adiabatic compressed air energy storage system based on heat storage medium and exhaust temperature[J]. Thermal Power Generation, 2021, 50 (8): 39- 46.
DOI |
|
11 | 文贤馗, 李翔, 邓彤天, 等. 先进压缩空气储能系统的余热回收和利用[J]. 中国电力, 2022, 55 (2): 28- 34. |
WEN Xiankui, LI Xiang, DENG Tongtian, et al. Waste heat recovery and utilization of advanced compressed air energy storage system[J]. Electric Power, 2022, 55 (2): 28- 34. | |
12 |
ZHANG Y, YAO E R, WANG T Y. Comparative analysis of compressed carbon dioxide energy storage system and compressed air energy storage system under low-temperature conditions based on conventional and advanced exergy methods[J]. Journal of Energy Storage, 2021, 35, 102274.
DOI |
13 |
TONG Z M, CHENG Z W, TONG S G. A review on the development of compressed air energy storage in China: technical and economic challenges to commercialization[J]. Renewable and Sustainable Energy Reviews, 2021, 135, 110178.
DOI |
14 |
LI R X, WANG H R, ZHANG H R. Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage[J]. Renewable Energy, 2019, 138, 326- 339.
DOI |
15 |
QIN C, LOTH E. Liquid piston compression efficiency with droplet heat transfer[J]. Applied Energy, 2014, 114, 539- 550.
DOI |
16 |
BAZDAR E, SAMETI M, NASIRI F, et al. Compressed air energy storage in integrated energy systems: a review[J]. Renewable and Sustainable Energy Reviews, 2022, 167, 112701.
DOI |
17 |
JIANG R H, CAI Z D, PENG K W, et al. Thermo-economic analysis and multi-objective optimization of polygeneration system based on advanced adiabatic compressed air energy storage system[J]. Energy Conversion and Management, 2021, 229, 113724.
DOI |
18 |
YAO E R, WANG H R, WANG L G, et al. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system[J]. Energy Conversion and Management, 2017, 138, 199- 209.
DOI |
19 |
LIU Y R, DING Y X, YANG M L, et al. A trigeneration application based on compressed air energy storage integrated with organic Rankine cycle and absorption refrigeration: multi-objective optimisation and energy, exergy and economic analysis[J]. Journal of Energy Storage, 2022, 55, 105803.
DOI |
20 |
LIU J L, WANG J H. Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor[J]. Energy, 2015, 91, 420- 429.
DOI |
21 |
HAN Z H, SUN Y, LI P. Research on energy storage operation modes in a cooling, heating and power system based on advanced adiabatic compressed air energy storage[J]. Energy Conversion and Management, 2020, 208, 112573.
DOI |
22 |
黄璜, 刘然, 李茜, 等. 地热能多级利用技术综述[J]. 热力发电, 2021, 50 (9): 1- 10.
DOI |
HUANG Huang, LIU Ran, LI Qian, et al. Overview on multi-level utilization techniques of geothermal energy[J]. Thermal Power Generation, 2021, 50 (9): 1- 10.
DOI |
|
23 |
MENG N, LI T L, JIA Y N, et al. Techno-economic performance comparison of enhanced geothermal system with typical cycle configurations for combined heating and power[J]. Energy Conversion and Management, 2020, 205, 112409.
DOI |
24 | 孔珑. 工程流体力学[M]. 4版. 北京: 中国电力出版社, 2014. |
25 |
WANG J L, WU J Y, ZHENG C Y. Simulation and evaluation of a CCHP system with exhaust gas deep-recovery and thermoelectric generator[J]. Energy Conversion and Management, 2014, 86, 992- 1000.
DOI |
26 | 王卫良, 王玉召, 吕俊复, 等. 大型燃煤电站锅炉能效评价与节能分析[J]. 中国电力, 2020, 53 (4): 177- 185. |
WANG Weiliang, WANG Yuzhao, LYU Junfu, et al. Energy efficiency assessment of large capacity coal-fired boiler based on exergy analysis[J]. Electric Power, 2020, 53 (4): 177- 185. | |
27 |
RAZMI A, SOLTANI M, AGHANAJAFI C, et al. Thermodynamic and economic investigation of a novel integration of the absorption-recompression refrigeration system with compressed air energy storage (CAES)[J]. Energy Conversion and Management, 2019, 187, 262- 273.
DOI |
28 |
LI X Y, SHU G Q, TIAN H, et al. Dynamic modeling of CO2 transcritical power cycle for waste heat recovery of gasoline engines[J]. Energy Procedia, 2017, 105, 1576- 1581.
DOI |
[1] | Chengshuai HUANG, Jian LIANG, Bo LI, Yaxin YANG, Yang HU, Erren YAO. Study on the Thermo-economic Performance of a Integrated Energy System Based on Hydrogen-fueled Gas Turbine [J]. Electric Power, 2024, 57(1): 195-208. |
[2] | Kangkang WANG, Xinwei SUN, Bo ZHOU, Tianwen ZHENG, Wei WEI, Libo JIANG. Low-Frequency Oscillation Suppression Strategy for Power System Based on Supplementary Damping Control of Compressed Air Energy Storage [J]. Electric Power, 2023, 56(10): 115-123. |
[3] | WEN Xiankui, LI Xiang, DENG Tongtian, ZHONG Jingliang, WANG Suobin, LIU Shi. Waste Heat Recovery and Utilization of Advanced Compressed Air Energy Storage System [J]. Electric Power, 2022, 55(2): 28-34. |
[4] | ZHU Chanxia, XI Weimin, SUN Qiang, CHEN Jiejun, XIE Dian, CHEN Qian, SUN Zhihuang. Energy Transition Path for Urban Areas under New-type Urbanization: A Case Study on Suzhou City Wuzhong District [J]. Electric Power, 2020, 53(12): 232-240. |
[5] | HAN Zhonghe, LIU Shiming, ZHOU Quan, PANG Yongchao. Retrofit and Analysis of Recuperative A-CAES System [J]. Electric Power, 2016, 49(7): 90-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||