Electric Power ›› 2022, Vol. 55 ›› Issue (5): 111-121.DOI: 10.11930/j.issn.1004-9649.202201039
• Power System • Previous Articles Next Articles
LI Tianhui1, PANG Xianhai1, FAN Hui2, ZHEN Li2, GU Chaomin1, DONG Chi1
Received:
2022-01-13
Revised:
2022-02-25
Online:
2022-05-28
Published:
2022-05-18
Supported by:
LI Tianhui, PANG Xianhai, FAN Hui, ZHEN Li, GU Chaomin, DONG Chi. Fault Diagnosis Method for Circuit Breaker Opening and Closing Coil Based on IEMD and GA-WNN[J]. Electric Power, 2022, 55(5): 111-121.
[1] 贾辉, 李大伟, 杨明洙, 等. 油浸电力变压器受潮故障分析与处理[J]. 中国电力, 2009, 42(5): 85–87 JIA Hui, LI Dawei, YANG Mingzhu, et al. Analysis and treatment of moistened fault in oil-immersed power transformers[J]. Electric Power, 2009, 42(5): 85–87 [2] 李予全, 寇晓适, 张少锋, 等. 电流互感器密封失效引起的绝缘故障[J]. 中国电力, 2020, 53(11): 147–153,174 LI Yuquan, KOU Xiaoshi, ZHANG Shaofeng, et al. Insulation fault caused by current transformer seal failure[J]. Electric Power, 2020, 53(11): 147–153,174 [3] 夏小飞, 芦宇峰, 苏毅, 等. 基于相空间重构与改进GSA-SVM的高压断路器机械故障诊断[J]. 中国电力, 2021, 54(10): 169–176 XIA Xiaofei, LU Yufeng, SU Yi, et al. Mechanical fault diagnosis of high voltage circuit breakers based on phase space reconstruction and improved GSA-SVM[J]. Electric Power, 2021, 54(10): 169–176 [4] 崔宇翔. 基于机器学习的变电站故障诊断应用系统研究[D]. 汉中: 陕西理工大学, 2021. CUI Yuxiang. Research on fault diagnosis system of substation based on machine learning algorithms[D]. Hanzhong: Shaanxi University of Technology, 2021. [5] 张佳. 基于粒子群优化极限学习机的高压断路器故障诊断技术[D]. 厦门: 厦门理工学院, 2019. ZHANG Jia. Fault diagnosis technology of high voltage circuit breaker based on particle swarm optimization extreme learning machine[D]. Xiamen: Xiamen University of Technology, 2019. [6] 黄新波, 胡潇文, 朱永灿, 等. 基于卷积神经网络算法的高压断路器故障诊断[J]. 电力自动化设备, 2018, 38(5): 136–140,147 HUANG Xinbo, HU Xiaowen, ZHU Yongcan, et al. Fault diagnosis of high-voltage circuit breaker based on convolution neural network[J]. Electric Power Automation Equipment, 2018, 38(5): 136–140,147 [7] 夏小飞, 芦宇峰, 苏毅, 等. 基于振动信号区间特征快速提取的断路器储能状态辨识方法[J]. 中国电力, 2021, 54(2): 58–65 XIA Xiaofei, LU Yufeng, SU Yi, et al. Circuit breaker energy storage state identification based on quick extraction of vibration signal interval features[J]. Electric Power, 2021, 54(2): 58–65 [8] 宋亚凯, 张一茗, 张文涛, 等. 断路器分合闸线圈电流波形特征值提取算法研究[J]. 高压电器, 2020, 56(1): 181–187 SONG Yakai, ZHANG Yiming, ZHANG Wentao, et al. Research on extraction algorithm of current waveform characteristic value of circuit breaker opening and closing coil[J]. High Voltage Apparatus, 2020, 56(1): 181–187 [9] 崔红英, 丁浩, 杜江, 等. 基于故障树分析法的断路器故障分析[J]. 低压电器, 2012(5): 8–11, 38. CUI Hongying, DING Hao, DU Jiang, et al. Fault analysis of circuit breaker based on fault tree analysis[J]. Low Voltage Apparatus,2012(5):8−11,38. [10] 栾鑫, 乐秀璠, 李卫良, 等. 基于小波变换的断路器在线状态监测研究[J]. 电力学报, 2007, 22(4): 447–449,485 LUAN Xin, LE Xiufan, LI Weiliang, et al. On-line state monitoring device for voltage circuit breaker based on wavelet transform[J]. Journal of Electric Power, 2007, 22(4): 447–449,485 [11] 杨志泽, 梁良, 李小勇, 等. 灰色关联模型在高压断路器故障诊断中的应用[J]. 电网技术, 2015, 39(6): 1731–1735 YANG Zhize, LIANG Liang, LI Xiaoyong, et al. Application of the gray correlation model in fault diagnosis of high-voltage circuit breakers[J]. Power System Technology, 2015, 39(6): 1731–1735 [12] 赵晖, 徐浩然, 梅志刚, 等. 基于人工神经网络的逆变器开路故障诊断[J]. 电力电子技术, 2021, 55(2): 45–49 ZHAO Hui, XU Haoran, MEI Zhigang, et al. Fault diagnostic system for inverter open-circuit faults based on neural network[J]. Power Electronics, 2021, 55(2): 45–49 [13] 张振海, 王维庆, 王海云, 等. 基于HCS-GWO-MSVM的风电机组齿轮箱复合故障诊断研究[J]. 太阳能学报, 2021, 42(10): 176–182 ZHANG Zhenhai, WANG Weiqing, WANG Haiyun, et al. Research on compound fault diagnosis of wind turbine gearbox based on HCS-GWO-MSVM[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 176–182 [14] 谢丽蓉, 杨欢, 李进卫, 等. 基于GA-ENN特征选择和参数优化的双馈风电机组轴承故障诊断[J]. 太阳能学报, 2021, 42(1): 149–156 XIE Lirong, YANG Huan, LI Jinwei, et al. Bearing fault diagnosis using GA-ENN based feature selection and parameters optimization for doubly-fed wind turbine[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 149–156 [15] 叶春霖, 邱颖宁, 冯延晖. 基于警报信号和D-S证据理论的风电机组故障诊断[J]. 太阳能学报, 2019, 40(12): 3613–3620 YE Chunlin, QIU Yingning, FENG Yanhui. Fault diagnosis of wind turbine based on alarm signals and d-s evidence theory[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3613–3620 [16] 张佳, 陈志英, 陈丽安, 等. 基于粒子群优化极限学习机的断路器故障诊断方法研究[J]. 高压电器, 2020, 56(6): 181–188 ZHANG Jia, CHEN Zhiying, CHEN Lian, et al. Research on fault diagnosis of circuit breaker based on particle swarm optimization extreme learning machine[J]. High Voltage Apparatus, 2020, 56(6): 181–188 [17] 张帅, 彭在兴, 李锐海, 等. 断路器分合闸线圈电流波形的差异机制研究[J]. 高压电器, 2020, 56(6): 165–172 ZHANG Shuai, PENG Zaixing, LI Ruihai, et al. Research on the difference mechanism of current waveform of circuit breaker opening/closing coil[J]. High Voltage Apparatus, 2020, 56(6): 165–172 [18] 鄢仁武, 林穿, 高硕勋, 等. 基于小波时频图和卷积神经网络的断路器故障诊断分析[J]. 振动与冲击, 2020, 39(10): 198–205 YAN Renwu, LIN Chuan, GAO Shuoxun, et al. Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and convolution neural network[J]. Journal of Vibration and Shock, 2020, 39(10): 198–205 [19] 张佳, 陈志英, 陈丽安, 等. 基于改进集合模态分解的真空断路器分合闸线圈电流特征值提取[J]. 高压电器, 2020, 56(12): 116–123 ZHANG Jia, CHEN Zhiying, CHEN Lian, et al. Feature extraction of vacuum circuit breaker's opening and closing coil current based on modified ensemble empirical mode decomposition[J]. High Voltage Apparatus, 2020, 56(12): 116–123 [20] ZHANG Q H. Using wavelet network in nonparametric estimation[J]. IEEE Transactions on Neural Networks, 1997, 8(2): 227–236. [21] SRINIVAS N, KALYANMOY D. Multi objective optimization using nondominated sorting in genetic algorithm[J]. Evolutionary Computation, 1994, 2(3): 221–248. [22] DHANALAKSHMI S, KANNAN S, MAHADEVAN K, et al. Application of modified NSGA-II algorithm to Combined Economic and Emission Dispatch problem[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(4): 992–1002. [23] JEYADEVI S, BASKAR S, BABULAL C K, et al. Solving multiobjective optimal reactive power dispatch using modified NSGA-II[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(2): 219-228. [24] 王鲁. 基于遗传算法的多目标优化算法研究[D]. 武汉: 武汉理工大学, 2006. WANG Lu. Research on genetic algorithms for multi-objective optimization algorithms[D]. Wuhan: Wuhan University of Technology, 2006. |
[1] | Heqian LIU, Jian ZHANG, Haiyue ZHANG, Hongda YANG, Shiyu CHEN, Yubo SHEN, Lei WANG. A Fault Diagnosis Method for Interturn Short Circuit of Dry-Type Air-Core Reactor Based on High Frequency Impedance Spectrum [J]. Electric Power, 2024, 57(10): 218-224. |
[2] | ZHANG Jian, ZHANG Peng, XU Hui, GONG Mingchen, WANG Yue, ZHANG Jing. Fault Simulation of High-Voltage Circuit Breaker in Low-Temperature Environment [J]. Electric Power, 2023, 56(5): 153-162. |
[3] | LI Yan, CHENG Xin, HUANG Zuliang, YANG Zhuo. Research on High Reliability Three-Phase Multi-function Grid-Connected Converter [J]. Electric Power, 2023, 56(5): 172-181. |
[4] | LI Gang, MENG Kun, HE Shuai, LIU Yunpeng, YANG Ning. A Bi-LSTM-Based Transformer Fault Diagnosis Method Considering Feature Coupling [J]. Electric Power, 2023, 56(3): 100-108,117. |
[5] | Wei HAN, Wenyan DUAN, Xingwei DU, Feng YAO, Weidong MA, Lei LIU. Fault Diagnosis Method for Operational Security Control System Based on Digital Twins [J]. Electric Power, 2023, 56(11): 121-127. |
[6] | Haifei MA, Wei TENG, Dikang PENG, Yibing LIU, Tao JIN. Compound Fault Feature Extraction of Wind Power Gearbox Based on DRS and Improved Autogram [J]. Electric Power, 2023, 56(10): 71-79. |
[7] | Shuang WANG, Qian LUO, Bo TANG, Lan JIANG, Jin LI. CHPOA-DBN Transformer Fault Diagnosis Method Considering Sample Within-Class Imbalance [J]. Electric Power, 2023, 56(10): 133-144. |
[8] | Hongjie ZHANG, Guifeng CHEN, Hongwei YAN, Xiaolong YANG, Tianren HOU, Wei ZHANG. Fault Diagnosis of LSTM Network Tansformer Based on SMOTE and Bayes Optimization [J]. Electric Power, 2023, 56(10): 164-170. |
[9] | CHEN Tie, LENG Haowei, LI Xianshan, CHEN Yifu. Transformer Hierarchical Fault Diagnosis Model Based on Dissolved Gas Analysis of Insulating Oil and Class Overlap Features [J]. Electric Power, 2022, 55(7): 22-32,41. |
[10] | HAO Lingling, ZHU Yongli, WANG Yongzheng. Transformer Fault Diagnosis Method Based on DCAE-KSSELM [J]. Electric Power, 2022, 55(2): 125-130. |
[11] | YU Bin, SONG Xingrong, ZHOU Ting, LUO Linbo, LI Hui, CHE Liang. Open-Circuit Fault Diagnosis Method of Energy Storage Converter Based on MFCC Feature Set [J]. Electric Power, 2022, 55(12): 34-42. |
[12] | WU Sihang, SHEN Hong, QI Lei, QIU Peng, KUAI Zhaoxia. Prediction and Analysis of Transient Electric Field in DC Yard of Flexible Converter Station Under Short-Circuit Conditions [J]. Electric Power, 2021, 54(9): 109-118. |
[13] | LI Fuzhi, ZHENG Weibin, ZHANG Wenhai, ZHANG Zhiyong, LIN Defeng, ZHANG Xubo, ZHANG Rongjian. Fault Path Direct-Current Resistance Based Off-Line Single-Phase-To-Ground Fault Location [J]. Electric Power, 2021, 54(2): 140-146. |
[14] | QUAN Yue, WANG Zhiyuan, LI Binbin, XU Dianguo. A High-Voltage Large-Capacity DC/DC Converter Integrated with the Function of DC Circuit Breaker [J]. Electric Power, 2021, 54(10): 46-54. |
[15] | XIA Xiaofei, LU Yufeng, SU Yi, YANG Jian. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Phase Space Reconstruction and Improved GSA-SVM [J]. Electric Power, 2021, 54(10): 169-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||