Electric Power ›› 2024, Vol. 57 ›› Issue (10): 1-11.DOI: 10.11930/j.issn.1004-9649.202405058
• Special Contribution • Previous Articles Next Articles
Yuanbing ZHOU1,2(), Naiwei GONG1,2(
), Haojie WANG1,2, Jinyu XIAO1,2, Yun ZHANG1,2
Received:
2024-05-13
Accepted:
2024-08-11
Online:
2024-10-23
Published:
2024-10-28
Supported by:
Yuanbing ZHOU, Naiwei GONG, Haojie WANG, Jinyu XIAO, Yun ZHANG. Study on the Influence of Electric Vehicle Development and the Vehicle-Grid Interaction on New Energy Storage Configuration in China[J]. Electric Power, 2024, 57(10): 1-11.
种类 | 参数 | 全生命周期 出行用能/ (万kW·h) | 电池 容量/ (kW·h) | 出行循 环次数 | ||||||
私家 | 年行驶里程/万km | 0.8~2 | 2~7 | 100 | ||||||
百km耗电量/(kW·h) | 15~22 | |||||||||
出租 | 年行驶里程/万km | 6~9 | 14~34 | 100 | ||||||
百km耗电量/(kW·h) | 15~25 | |||||||||
公交 | 年行驶里程/万km | 3.2~4.5 | 43~88 | 300 | ||||||
百km耗电量/(kW·h) | 90~130 | |||||||||
长途 客运 | 年行驶里程/万km | 1.5~4 | 18~96 | 540 | ||||||
百km耗电量/(kW·h) | 80~160 | |||||||||
小型 货车 | 年行驶里程/万km | 2~4 | 8~36 | 600 | ||||||
百km耗电量/(kW·h) | 25~60 |
Table 1 Energy demand analysis by vehicle type
种类 | 参数 | 全生命周期 出行用能/ (万kW·h) | 电池 容量/ (kW·h) | 出行循 环次数 | ||||||
私家 | 年行驶里程/万km | 0.8~2 | 2~7 | 100 | ||||||
百km耗电量/(kW·h) | 15~22 | |||||||||
出租 | 年行驶里程/万km | 6~9 | 14~34 | 100 | ||||||
百km耗电量/(kW·h) | 15~25 | |||||||||
公交 | 年行驶里程/万km | 3.2~4.5 | 43~88 | 300 | ||||||
百km耗电量/(kW·h) | 90~130 | |||||||||
长途 客运 | 年行驶里程/万km | 1.5~4 | 18~96 | 540 | ||||||
百km耗电量/(kW·h) | 80~160 | |||||||||
小型 货车 | 年行驶里程/万km | 2~4 | 8~36 | 600 | ||||||
百km耗电量/(kW·h) | 25~60 |
私家车 保有量/ 亿辆 | 参与意 愿度/% | 续航里 程/km | 慢充 占比/% | 单次 在网 时长/h | 最大放电 深度/% | 日均接 网频次 | 慢充 功率/ kW | |||||||
2.8 | 40~80 | 600~ | 80 | 6~11 | 30~50 | 0.5~2.0 | 10~30 |
Table 2 Electric Vehicle network interactive scene settings
私家车 保有量/ 亿辆 | 参与意 愿度/% | 续航里 程/km | 慢充 占比/% | 单次 在网 时长/h | 最大放电 深度/% | 日均接 网频次 | 慢充 功率/ kW | |||||||
2.8 | 40~80 | 600~ | 80 | 6~11 | 30~50 | 0.5~2.0 | 10~30 |
参数 | 东北 | 华南 | 华北 | 西北 | 华东 | 华中 | 西南 | |||||||||
调节前 | 最大净负荷/万kW | |||||||||||||||
最小净负荷/万kW | – | – | – | – | – | – | –79 | |||||||||
电动汽车最大负荷/万kW | ||||||||||||||||
电动汽车最小负荷/万kW | 231 | 364 | 660 | 47 | 389 | 384 | ||||||||||
调节后 | 最大净负荷/万kW | |||||||||||||||
最小净负荷/万kW | – | –43 | – | – | – | – | ||||||||||
电动汽车最大负荷/万kW | ||||||||||||||||
电动汽车最小负荷/万kW | – | – | – | – | – | – | –924 | |||||||||
净负荷最大值削减量/万kW | 525 | |||||||||||||||
净负荷最大值削减量占净负荷最大峰谷差比重/% | 3.4 | 16.8 | 2.1 | 1.8 | 3.3 | 1.1 | 15.2 | |||||||||
净负荷最小值提升量/万kW | ||||||||||||||||
净负荷最小值提升量占净负荷最大峰谷差比重/% | 4.4 | 6.2 | 4.8 | 1.7 | 15.4 | 10.4 | 15.8 |
Table 3 V2G Peak shaving and valley filling effects in various regions
参数 | 东北 | 华南 | 华北 | 西北 | 华东 | 华中 | 西南 | |||||||||
调节前 | 最大净负荷/万kW | |||||||||||||||
最小净负荷/万kW | – | – | – | – | – | – | –79 | |||||||||
电动汽车最大负荷/万kW | ||||||||||||||||
电动汽车最小负荷/万kW | 231 | 364 | 660 | 47 | 389 | 384 | ||||||||||
调节后 | 最大净负荷/万kW | |||||||||||||||
最小净负荷/万kW | – | –43 | – | – | – | – | ||||||||||
电动汽车最大负荷/万kW | ||||||||||||||||
电动汽车最小负荷/万kW | – | – | – | – | – | – | –924 | |||||||||
净负荷最大值削减量/万kW | 525 | |||||||||||||||
净负荷最大值削减量占净负荷最大峰谷差比重/% | 3.4 | 16.8 | 2.1 | 1.8 | 3.3 | 1.1 | 15.2 | |||||||||
净负荷最小值提升量/万kW | ||||||||||||||||
净负荷最小值提升量占净负荷最大峰谷差比重/% | 4.4 | 6.2 | 4.8 | 1.7 | 15.4 | 10.4 | 15.8 |
1 | 辛保安, 新型电力系统与新型能源体系[M]. 北京: 中国电力出版社, 2023. |
2 | 周原冰, 张士宁, 侯方心, 等. 电力行业碳达峰及促进全社会碳减排影响分析[J]. 中国电力, 2024, 57 (9): 1- 9. |
ZHOU Yuanbing, ZHANG Shining, HOU Fangxin, et al. Analysis of carbon peaking in power sector and its impact on promoting whole-society carbon emissions reduction[J]. Electric Power, 2024, 57 (9): 1- 9. | |
3 | 崔杨, 安宁, 付小标, 等. 面向高比例新能源电力系统调峰需求的储能容量配置方法综述[J]. 东北电力大学学报, 2023, 43 (1): 1- 8. |
CUI Yang, AN Ning, FU Xiaobiao, et al. Overview of energy storage capacity allocation methods for high-proportion new energy power system peak shaving demand[J]. Journal of Northeast Electric Power University, 2023, 43 (1): 1- 8. | |
4 | 朱静慧, 高佳, 余欣梅, 等. 碳中和背景下我国生态碳汇发展形势及建议[J]. 内蒙古电力技术, 2022, 40 (6): 1- 8. |
ZHU Jinghui, GAO Jia, YU Xinmei, et al. Developmengt situation and suggestions for ecological carbon sink in China under background of carbon neutralization[J]. Inner Mongolia Electric Power, 2022, 40 (6): 1- 8. | |
5 | 李吉峰, 唐克, 王孜航, 等. 计及多源互补特性的新型电力系统分布式电源承载能力评估[J]. 东北电力大学学报, 2023, 43 (1): 62- 68. |
LI Jifeng, TANG Ke, WANG Zihang, et al. Assessment of distributed power generations bearing capacity of modern power systems with multi-sources complementary characteristics[J]. Journal of Northeast Electric Power University, 2023, 43 (1): 62- 68. | |
6 | 岳昊. 中国构建新型电力系统面临的问题、风险与建议[N]. 电力决策与舆情参考, 2021(16): 26–36. |
7 | 余潇潇, 宋福龙, 周原冰, 等. “新基建” 对中国 “十四五” 电力需求和电网规划的影响分析[J]. 中国电力, 2021, 54 (7): 11- 17. |
YU Xiaoxiao, SONG Fulong, ZHOU Yuanbing, et al. Investigations on the impact of new infrastructure on electricity forecast and power system planning during the 14th five-year plan period[J]. Electric Power, 2021, 54 (7): 11- 17. | |
8 | 任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25. |
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25. | |
9 | 中国化学与物理电源行业协会. 2024年中国新型储能产业发展白皮书[R]. 天津: 中国化学与物理电源行业协会, 2024. |
10 | 中国能源研究会储能专委会, 中关村储能产业技术联盟. 储能产业研究白皮书2024[R]. 北京: 中关村储能产业技术联盟, 2024. |
11 |
刘坚. 我国新型储能发展问题分析与政策建议[J]. 中国能源, 2022, 44 (6): 6- 10, 35.
DOI |
LIU Jian. Analysis and policy suggestions on the development of new energy storage in China[J]. Energy of China, 2022, 44 (6): 6- 10, 35.
DOI |
|
12 | 李更丰, 孙少华, 别朝红, 等. 面向新型电力系统弹性提升的储能优化配置与灵活调度研究综述[J]. 高电压技术, 2023, 49 (10): 4084- 4095. |
LI Gengfeng, SUN Shaohua, BIE Zhaohong, et al. Review on optimal configuration and flexible scheduling research of energy storage for resilience improvement of new power system[J]. High Voltage Engineering, 2023, 49 (10): 4084- 4095. | |
13 | 李丰, 姚韵, 张会娟, 等. 新型储能经济性及价格机制研究[J]. 价格理论与实践, 2022, (4): 66- 70, 204. |
LI Feng, YAO Yun, ZHANG Huijuan, et al. Research on new energy storage price mechanism and economic[J]. Price: Theory & Practice, 2022, (4): 66- 70, 204. | |
14 |
刘洪波, 刘永发, 任阳, 等. 高风电渗透率下考虑系统风电备用容量的储能配置[J]. 发电技术, 2024, (2): 260- 272.
DOI |
LIU Hongbo, LIU Yongfa, REN Yang, et al. Energy storage configuration considering the system wind power reserve capacity under high wind power permeability[J]. Power Generation Technology, 2024, (2): 260- 272.
DOI |
|
15 | 任子俊, 曲小慧, 王敏之, 等. 新型电力系统中电化学储能应用与关键技术综述[J]. 东北电力大学学报, 2023, 43 (6): 1- 7, 78. |
REN Zijun, QU Xiaohui, WANG Minzhi, et al. A review of electrochemical energy storage applications and key technologies in new-type power systems[J]. Journal of Northeast Electric Power University, 2023, 43 (6): 1- 7, 78. | |
16 | 赵添辰, 张弓, 张云飞, 等. “双碳” 目标下抽水蓄能提升系统保供能力的技术经济性研究[J]. 储能科学与技术, 2024, 13 (3): 1059- 1073. |
ZHAO Tianchen, ZHANG Gong, ZHANG Yunfei, et al. Technical and economic research on the capacity of supply assurance for pumped-storage systems under the target of "dual carbon"[J]. Energy Storage Science and Technology, 2024, 13 (3): 1059- 1073. | |
17 |
黄学良, 刘永东, 沈斐, 等. 电动汽车与电网互动: 综述与展望[J]. 电力系统自动化, 2024, 48 (7): 3- 23.
DOI |
HUANG Xueliang, LIU Yongdong, SHEN Fei, et al. Vehicle to grid: review and prospect[J]. Automation of Electric Power Systems, 2024, 48 (7): 3- 23.
DOI |
|
18 | 魏一凡, 韩雪冰, 卢兰光, 等. 面向碳中和的新能源汽车与车网互动技术展望[J]. 汽车工程, 2022, 44 (4): 449- 464. |
WEI Yifan, HAN Xuebing, LU Languang, et al. Technology prospects of carbon neutrality-oriented new-energy vehicles and vehicle-grid interaction[J]. Automotive Engineering, 2022, 44 (4): 449- 464. | |
19 |
吴佳琦, 张谦, 吴小汉, 等. 电动汽车与电网互动的关键问题研究综述[J]. 汽车工程学报, 2022, 12 (4): 411- 430.
DOI |
WU Jiaqi, ZHANG Qian, WU Xiaohan, et al. A review of key issues in electric vehicle and power grid interaction[J]. Chinese Journal of Automotive Engineering, 2022, 12 (4): 411- 430.
DOI |
|
20 |
BAE S, KWASINSKI A. Spatial and temporal model of electric vehicle charging demand[J]. IEEE Transactions on Smart Grid, 2012, 3 (1): 394- 403.
DOI |
21 | 卢慧, 谢开贵, 胡博, 等. 混合交通流下计及储能型柔性开关影响的交通-配电网联合规划[J]. 电力系统保护与控制, 2023, 51 (22): 108- 119. |
LU Hui, XIE Kaigui, HU Bo, et al. Coordinated planning of transportation and distribution networks with mixed traffic flow and E-SOP[J]. Power System Protection and Control, 2023, 51 (22): 108- 119. | |
22 | 于霄宇, 纪正森, 嵇灵, 等. 双碳目标下我国电动汽车碳减排贡献潜力分析[J]. 智慧电力, 2024, 52 (2): 25- 31, 39. |
YU Xiaoyu, JI Zhengsen, JI Ling, et al. Analysis on carbon emission reduction potential of electric vehicles in China under goal of carbon neutrality and carbon peaking[J]. Smart Power, 2024, 52 (2): 25- 31, 39. | |
23 | 王斐, 李正烁, 叶萌, 等. 电动汽车充电对电网的影响及其优化调度研究述评[J]. 南方电网技术, 2016, 10 (6): 70- 80. |
WANG Fei, LI Zhengshuo, YE Meng, et al. Review on research of impact of electric vehicles charging on power grids and its optimal dispatch[J]. Southern Power System Technology, 2016, 10 (6): 70- 80. | |
24 | 杨捷, 郭凡, 曹子健. 电动汽车储能V2G模式的成本与收益分析[J]. 储能科学与技术, 2020, 9 (S1): 45- 51. |
YANG Jie, GUO Fan, CAO Zijian. Cost and benefit analysis of EV energy storage through V2G[J]. Energy Storage Science and Technology, 2020, 9 (S1): 45- 51. | |
25 |
王旖旎. 中国汽车需求预测: 基于Gompertz模型的分析[J]. 财经问题研究, 2005, (11): 43- 50.
DOI |
WANG Yini. CAR OWNERSHIP FORECAST IN CHINA: an analysis based on gompertz equation[J]. Research on Financial and Economic Issues, 2005, (11): 43- 50.
DOI |
|
26 |
MA S C, FAN Y. A deployment model of EV charging piles and its impact on EV promotion[J]. Energy Policy, 2020, 146, 111777.
DOI |
27 | 王慧芳. 充电基础设施对电动汽车推广的影响机制研究——基于两侧间接网络效应的分析[D]. 广州: 暨南大学, 2019. |
WANG Huifang. Research on the influencing mechanism of charging infrastructure on the promotion of electric vehicles: based on the analysis of indirect network effect on both sides[D]. Guangzhou: Jinan University, 2019. | |
28 |
郭磊, 王克文, 文福拴, 等. 电动汽车充电设施规划研究综述与展望[J]. 电力科学与技术学报, 2019, 34 (3): 56- 70.
DOI |
GUO Lei, WANG Kewen, WEN Fushuan, et al. Review and prospect of charging facility planning of electric vehicles[J]. Journal of Electric Power Science and Technology, 2019, 34 (3): 56- 70.
DOI |
|
29 | 中国汽车工程学会, 清华四川能源互联网研究院. 中国电动汽车充电基础设施发展战略与路线图研究(2021-2035)[R]. 北京: 中国汽车工程学会, 2021. |
[1] | Zhipeng LV, Zhenhao SONG, Lisheng LI, Yang LIU. Optimization Scheduling of Integrated Energy System Scheduling in Industrial Park containing Electric Vehicles [J]. Electric Power, 2024, 57(4): 25-31. |
[2] | ZHANG Juncheng, LI Min, LIU Zhiwen, TAN Jing, TAO Yigang, LUO Tianlu. An Evaluation Method for Multi-type Flexible Resource Regulation Capability on the User Side of Distribution Networks [J]. Electric Power, 2023, 56(9): 96-103,119. |
[3] | REN Dawei, HOU Jinming, XIAO Jinyu, JIN Chen, WU Jiawei. Research on Development Potential and Path of New Energy Storage Supporting Carbon Peak and Carbon Neutrality [J]. Electric Power, 2023, 56(8): 17-25. |
[4] | AN Jiakun, YANG Shuqiang, WANG Tao, HE Chunguang, ZHANG Jing, YUAN Chao, DOU Chunxia. Optimal Scheduling Strategy for Micro Energy Internet Under Electric Vehicles Aggregation [J]. Electric Power, 2023, 56(5): 80-88. |
[5] | Yan WU, Guangzheng WANG. Review and Prospect of Distribution Network Resilience Assessment and Improvement Based on CiteSpace [J]. Electric Power, 2023, 56(12): 100-112, 137. |
[6] | ZHAO Anjun, WANG Pengzhu, JING Jing, GAO Zhikun, LI Wang. Optimal Configuration Method of New Energy Capacity for Rural Households Considering Impact of Electric Vehicles [J]. Electric Power, 2022, 55(8): 31-39,50. |
[7] | GUO Mingxing, LV Ran, FEI Fei, CHEN Tao. Economic Scheduling of Electric-Heat-Water Multi-Energy Coupling Systems Considering Electric Vehicles and Demand Response [J]. Electric Power, 2022, 55(12): 105-111. |
[8] | CAI Haiqing, DAI Wei, ZHAO Jingyi, WANG Cheng, ZHANG Zhijie, LI Shuyong. Available Capacity Evaluation Method of Electric Vehicle Charging Stations Based on Multi-parametric Programming [J]. Electric Power, 2022, 55(11): 175-183. |
[9] | WU Rui, ZHOU Liangsong, YAO Zhandong. Intelligent Charging Navigation for Electric Vehicles Based on Real-time Electricity Price [J]. Electric Power, 2020, 53(4): 131-138,146. |
[10] | JIANG Yijing, YU Aiqing, HUANG Minli. Coordinated Charging Guiding Strategy for Electric Vehicles in Temporal-spatial Dimension Considering User Satisfaction Degree [J]. Electric Power, 2020, 53(4): 122-130. |
[11] | CHEN Rongjun, HE Yongxiu, CHEN Fenkai, DONG Mingyu, LI Dezhi, GUANG Fengtao. Long-term Daily Load Forecast of Electric Vehicle Based on System Dynamics and Monte Carlo Simulation [J]. Electric Power, 2018, 51(9): 126-134. |
[12] | GONG Cheng, WANG Wei, MA Longfei, ZHANG Baoqun, JIAO Ran, DING Yifeng, CHEN Jianshu, YANG Shuo. Research on the Application of UPQC in Power Quality Control of Electric Vehicle Charging Station [J]. Electric Power, 2017, 50(6): 165-171. |
[13] | LI Min, SU Xiaolin, YAN Xiaoxia, ZHANG Yanjuan. The Optimal Strategy of Level 2 Sharing Residential EVSE for Electric Vehicles [J]. Electric Power, 2015, 48(6): 94-101. |
[14] | ZENG Ming, ZENG Fan-xiao, ZHU Xiao-li, XUE Song. Forecast of Electric Vehicles in China Based on Bass Model [J]. Electric Power, 2013, 46(1): 36-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||