Electric Power ›› 2024, Vol. 57 ›› Issue (12): 60-70.DOI: 10.11930/j.issn.1004-9649.202403112
• Power & Load Forecasting Technology in New Power Systems • Previous Articles Next Articles
Pengwei YANG1(), Liping ZHAO1, Junfa CHEN2, Zhao ZHEN3(
), Fei WANG3,4,5, Liming LI6
Received:
2024-03-27
Accepted:
2024-06-25
Online:
2024-12-23
Published:
2024-12-28
Supported by:
Pengwei YANG, Liping ZHAO, Junfa CHEN, Zhao ZHEN, Fei WANG, Liming LI. Distributed Photovoltaic Ultra-short-term Power Forecasting Method Based on Temporal Analog Matching Approach and Transformer Network Modeling[J]. Electric Power, 2024, 57(12): 60-70.
方法 | 多数为晴天 | 多数为云蓬 | 多数为云密 | |||
LSTM | 1.77 | 1.85 | 1.89 | |||
Transformer | 1.66 | 1.67 | 1.71 | |||
TAMA+LSTM | 1.64 | 1.76 | 1.78 | |||
TAMA +Transformer | 1.53 | 1.58 | 1.68 |
Table 1 Comparison of RMSE errors of different forecasting models
方法 | 多数为晴天 | 多数为云蓬 | 多数为云密 | |||
LSTM | 1.77 | 1.85 | 1.89 | |||
Transformer | 1.66 | 1.67 | 1.71 | |||
TAMA+LSTM | 1.64 | 1.76 | 1.78 | |||
TAMA +Transformer | 1.53 | 1.58 | 1.68 |
方法 | 多数为晴天 | 多数为云蓬 | 多数为云密 | |||
LSTM | 1.41 | 1.48 | 1.52 | |||
Transformer | 1.38 | 1.35 | 1.48 | |||
TAMA+LSTM | 1.36 | 1.41 | 1.46 | |||
TAMA +Transformer | 1.26 | 1.31 | 1.37 |
Table 2 Comparison of MAE errors of different forecasting models
方法 | 多数为晴天 | 多数为云蓬 | 多数为云密 | |||
LSTM | 1.41 | 1.48 | 1.52 | |||
Transformer | 1.38 | 1.35 | 1.48 | |||
TAMA+LSTM | 1.36 | 1.41 | 1.46 | |||
TAMA +Transformer | 1.26 | 1.31 | 1.37 |
1 | 国家能源局. 2023年上半年光伏发电建设运行情况[EB/OL]. (2023-07-27) [2023-12-15]. http://www.nea.gov.cn/2023-07/27/c_1310734298.htm. |
2 | 高岩, 吴汉斌, 张纪欣, 等. 基于组合深度学习的光伏功率日前概率预测模型[J]. 中国电力, 2024, 57 (4): 100- 110. |
GAO Yan, WU Hanbin, ZHANG Jixin, et al. Probabilistic forecasting model for day-ahead power generation of centralized photovoltaic stations based on combine deep learning[J]. Electric Power, 2024, 57 (4): 100- 110. | |
3 | 顼佳宇, 李伟, 宋宝同, 等. 分布式光伏接入配电网适应性评估 [J/OL]. 电测与仪表, 1–8[2023-11-13] http://kns.cnki.net/kcms/detail/23.1202.TH.20220602.1656.006.html. |
XIANG Jiayu, LI Wei, SONG Baotong, et al. Adaptability evaluation of distributed photovoltaic access distribution network[J/OL]. Electrical Measurement & Instrumentation, 1–8[2023-11-13] http://kns.cnki.net/kcms/detail/23.1202.TH.20220602.1656.006.html. | |
4 | 阮呈隆, 李康平, 李正辉, 等. 分布式光伏集群功率短期预测的空间互补特性初探[J]. 电力系统自动化, 2024, 48 (3): 42- 50. |
RUAN Chenglong, LI Kangping, LI Zhenghui, et al. Preliminary study on spatial complementarity characteristics of short-term power forecasting for distributed photovoltaic clusters[J]. Automation of Electric Power Systems, 2024, 48 (3): 42- 50. | |
5 |
LI K P, YAN J C, HU L, et al. Two-stage decoupled estimation approach of aggregated baseline load under high penetration of behind-the-meter PV system[J]. IEEE Transactions on Smart Grid, 2021, 12 (6): 4876- 4885.
DOI |
6 |
WANG F, GE X X, DONG Z B, et al. Joint energy disaggregation of behind-the-meter PV and battery storage: a contextually supervised source separation approach[J]. IEEE Transactions on Industry Applications, 2022, 58 (2): 1490- 1501.
DOI |
7 |
MAYER M J, GRÓF G. Extensive comparison of physical models for photovoltaic power forecasting[J]. Applied Energy, 2021, 283, 116239.
DOI |
8 | 黄莉, 甘恒玉, 刘兴举, 等. 基于Transformer编码器的超短期光伏发电功率预测[J]. 智慧电力, 2024, 52 (5): 16- 22, 59. |
HUANG Li, GAN Hengyu, LIU Xingju, et al. Ultra-short-term photovoltaic power generation prediction based on transformer encoder[J]. Smart Power, 2024, 52 (5): 16- 22, 59. | |
9 | 张海涛, 李文娟, 李雪峰, 等. 基于变分模态分解和时间注意力机制TCN网络的光伏发电功率预测[J/OL]. 电测与仪表: 1–8 [2024-05-25]. http://kns.cnki.net/kcms/detail/23.1202.th.20240510.1542.003.html. |
ZHANG Haitao, LI Wenjuan, LI Xuefeng, et al. Photovoltaic power forecasting based on TPA-TCN model and variational modal decomposition[J/OL]. Electrical Measurement & Instrumentation: 1–8 [2024-05-25]. http://kns.cnki.net/kcms/detail/23.1202.th.20240510.1542.003.html. | |
10 | 张家安, 王琨玥, 陈建, 等. 基于空间相关性的分布式光伏出力预测[J]. 电力建设, 2020, 41 (3): 47- 53. |
ZHANG Jiaan, WANG Kunyue, CHEN Jian, et al. Research on prediction of distributed photovoltaic output considering spatial relevance[J]. Electric Power Construction, 2020, 41 (3): 47- 53. | |
11 | 王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46 (11): 67- 74. |
WANG Biao, LYU Yang, CHEN Zhong, et al. Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of Electric Power Systems, 2022, 46 (11): 67- 74. | |
12 |
ZHANG M, ZHEN Z, LIU N, et al. Optimal graph structure based short-term solar PV power forecasting method considering surrounding spatio-temporal correlations[J]. IEEE Transactions on Industry Applications, 2023, 59 (1): 345- 357.
DOI |
13 | 王玉庆, 徐飞, 刘志坚, 等. 基于动态关联表征与图网络建模的分布式光伏超短期功率预测[J]. 电力系统自动化, 2023, 47 (20): 72- 82. |
WANG Yuqing, XU Fei, LIU Zhijian, et al. Ultra-short-term power forecasting of distributed photovoltaic based on dynamic correlation characterization and graph network modeling[J]. Automation of Electric Power Systems, 2023, 47 (20): 72- 82. | |
14 | 赵洪山, 孙承妍, 温开云, 等. 无气象信息条件下基于AGCRN的分布式光伏出力超短期预测方法[J]. 高电压技术, 2024, 50 (1): 65- 73. |
ZHAO Hongshan, SUN Chengyan, WEN Kaiyun, et al. Ultra-short-term prediction of distributed photovoltaic power method based on AGCRN in the absence of meteorological information[J]. High Voltage Engineering, 2024, 50 (1): 65- 73. | |
15 | WANG Y Q, FU W J, ZHANG X D, et al. Dynamic directed graph convolution network based ultra-short-term forecasting method of distributed photovoltaic power to enhance the resilience and flexibility of distribution network[J]. IET Generation, Transmission & Distribution, 2024, 18 (2): 337- 352. |
16 | 臧海祥, 程礼临, 刘玲, 等. 基于数据驱动的太阳辐射估计和预测研究与展望[J]. 电力系统自动化, 2021, 45 (11): 170- 183. |
ZANG Haixiang, CHENG Lilin, LIU Ling, et al. Research and prospect for data-driven estimation and prediction of solar radiation[J]. Automation of Electric Power Systems, 2021, 45 (11): 170- 183. | |
17 | 王涛, 王旭, 许野, 等. 计及相似日的LSTM光伏出力预测模型研究[J]. 太阳能学报, 2023, 44 (8): 316- 323. |
WANG Tao, WANG Xu, XU Ye, et al. Study on LSTM photovoltaic output prediction model considering similar days[J]. Acta Energiae Solaris Sinica, 2023, 44 (8): 316- 323. | |
18 | 李超然, 潘鹏程, 杨伟荣, 等. 基于改进相似日优化HBA-BiLSTM-KELM的光伏发电功率预测[J]. 太阳能学报, 2024, 45 (5): 508- 516. |
LI Chaoran, PAN Pengcheng, YANG Weirong, et al. Research on PV system power forecasting based on improved similar day and HBA-BiLSTM-KELM neural network[J]. Acta Energiae Solaris Sinica, 2024, 45 (5): 508- 516. | |
19 |
LIU X J, LIU Y Y, KONG X B, et al. Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis[J]. Energy, 2023, 271, 126963.
DOI |
20 | 张青山, 王丽婕, 郝颖, 等. 基于卫星云图和晴空模型的分布式光伏电站太阳辐照度超短期预测[J]. 高电压技术, 2022, 48 (8): 3271- 3281. |
ZHANG Qingshan, WANG Lijie, HAO Ying, et al. Ultra-short-term solar irradiance forecasting of distributed photovoltaic power stations based on satellite cloud images and clear sky model[J]. High Voltage Engineering, 2022, 48 (8): 3271- 3281. | |
21 |
YAN J C, HU L, ZHEN Z, et al. Frequency-domain decomposition and deep learning based solar PV power ultra-short-term forecasting model[J]. IEEE Transactions on Industry Applications, 2021, 57 (4): 3282- 3295.
DOI |
22 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy. IEEE, 2017: 2980–2988. |
23 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//NIPS 2017, CA, USA, 2017. |
[1] | WU Xiaogang, YAN Jie, GE Chang, TANG Yajie, NI Chouwei, JI Qingfeng. Ultra-Short-Term Power Forecasting Method for Wind-Solar-Hydro Integration Based on Improved GRU-CNN [J]. Electric Power, 2023, 56(9): 178-186,205. |
[2] | GAO Ya-jing, MIAO Hong-jia, WU Wen-chuan, JU Yun-tao, LI Fei. Comparison of Different Transformer Models and Their Influences on Power Flow of Three-Phase Distribution System [J]. Electric Power, 2014, 47(6): 49-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||