Electric Power ›› 2024, Vol. 57 ›› Issue (12): 50-59.DOI: 10.11930/j.issn.1004-9649.202405022
• Power & Load Forecasting Technology in New Power Systems • Previous Articles Next Articles
Can CHEN1(), Zinuo SU2(
), Yuan MA1(
), Jialin LIU1(
), Yuqing WANG2(
), Fei WANG2,3,4(
)
Received:
2024-05-09
Accepted:
2024-08-07
Online:
2024-12-23
Published:
2024-12-28
Supported by:
Can CHEN, Zinuo SU, Yuan MA, Jialin LIU, Yuqing WANG, Fei WANG. Ultra-short-term Probabilistic Forecasting of Distributed Photovoltaic Power Generation Based on Hierarchical Correlation Modeling[J]. Electric Power, 2024, 57(12): 50-59.
方法 | EMA/MW | ERMS/MW | ||
K-means聚类+GCN | ||||
深度一致性聚类+GCN | ||||
K-means聚类+HGCN | ||||
深度一致性聚类+HGCN |
Table 1 Forecasting accuracy of different clustering methods
方法 | EMA/MW | ERMS/MW | ||
K-means聚类+GCN | ||||
深度一致性聚类+GCN | ||||
K-means聚类+HGCN | ||||
深度一致性聚类+HGCN |
方法 | 置信度95% | 置信度85% | ||||||||||
EPICP/% | EPINAW | EICE | EPICP/% | EPINAW | EICE | |||||||
本文方法 | 91.72 | 93.11 | 102.31 | 78.52 | 66.27 | 84.40 | ||||||
方法1 | 92.86 | 98.28 | 105.83 | 80.80 | 73.53 | 91.01 | ||||||
方法2 | 94.79 | 105.91 | 111.73 | 86.94 | 81.69 | 93.96 | ||||||
方法3 | 95.00 | 108.10 | 113.78 | 86.50 | 82.16 | 94.97 | ||||||
方法4 | 98.69 | 130.75 | 132.48 | 92.38 | 96.38 | 104.33 |
Table 2 Predictive performance of PV power under 4 h lead time
方法 | 置信度95% | 置信度85% | ||||||||||
EPICP/% | EPINAW | EICE | EPICP/% | EPINAW | EICE | |||||||
本文方法 | 91.72 | 93.11 | 102.31 | 78.52 | 66.27 | 84.40 | ||||||
方法1 | 92.86 | 98.28 | 105.83 | 80.80 | 73.53 | 91.01 | ||||||
方法2 | 94.79 | 105.91 | 111.73 | 86.94 | 81.69 | 93.96 | ||||||
方法3 | 95.00 | 108.10 | 113.78 | 86.50 | 82.16 | 94.97 | ||||||
方法4 | 98.69 | 130.75 | 132.48 | 92.38 | 96.38 | 104.33 |
方法 | 置信度95% | 置信度85% | ||||||||||
EPICP/% | EPINAW | EICE | EPICP/% | EPINAW | EICE | |||||||
本文方法 | 93.42 | 94.05 | 100.66 | 78.68 | 63.24 | 80.38 | ||||||
方法1 | 94.39 | 100.86 | 106.85 | 84.77 | 74.23 | 87.56 | ||||||
方法2 | 95.99 | 108.76 | 113.30 | 89.42 | 81.79 | 91.47 | ||||||
方法3 | 96.15 | 111.31 | 115.76 | 88.46 | 82.12 | 92.83 | ||||||
方法4 | 99.83 | 131.12 | 131.33 | 93.26 | 95.54 | 102.43 |
Table 4 Predictive performance of photovoltaic power generation under cloudy weather with 4 h lead time
方法 | 置信度95% | 置信度85% | ||||||||||
EPICP/% | EPINAW | EICE | EPICP/% | EPINAW | EICE | |||||||
本文方法 | 93.42 | 94.05 | 100.66 | 78.68 | 63.24 | 80.38 | ||||||
方法1 | 94.39 | 100.86 | 106.85 | 84.77 | 74.23 | 87.56 | ||||||
方法2 | 95.99 | 108.76 | 113.30 | 89.42 | 81.79 | 91.47 | ||||||
方法3 | 96.15 | 111.31 | 115.76 | 88.46 | 82.12 | 92.83 | ||||||
方法4 | 99.83 | 131.12 | 131.33 | 93.26 | 95.54 | 102.43 |
方法 | 置信度95% | 置信度85% | ||||||||||
EPICP/% | EPINAW | EICE | EPICP/% | EPINAW | EICE | |||||||
本文方法 | 92.44 | 94.09 | 101.78 | 79.16 | 59.10 | 74.65 | ||||||
方法1 | 97.65 | 100.79 | 103.21 | 80.41 | 68.43 | 85.09 | ||||||
方法2 | 93.12 | 103.57 | 111.24 | 85.41 | 75.04 | 87.85 | ||||||
方法3 | 98.95 | 110.43 | 111.59 | 84.16 | 76.34 | 90.70 | ||||||
方法4 | 95.42 | 126.51 | 132.59 | 90.17 | 91.97 | 101.99 |
Table 3 Predictive performance of photovoltaic power generation under sunny weather with 4 h lead time
方法 | 置信度95% | 置信度85% | ||||||||||
EPICP/% | EPINAW | EICE | EPICP/% | EPINAW | EICE | |||||||
本文方法 | 92.44 | 94.09 | 101.78 | 79.16 | 59.10 | 74.65 | ||||||
方法1 | 97.65 | 100.79 | 103.21 | 80.41 | 68.43 | 85.09 | ||||||
方法2 | 93.12 | 103.57 | 111.24 | 85.41 | 75.04 | 87.85 | ||||||
方法3 | 98.95 | 110.43 | 111.59 | 84.16 | 76.34 | 90.70 | ||||||
方法4 | 95.42 | 126.51 | 132.59 | 90.17 | 91.97 | 101.99 |
方法 | 置信度95% | 置信度85% | ||||||||||
EPICP/% | EPINAW | EICE | EPICP/% | EPINAW | EICE | |||||||
本文方法 | 90.41 | 95.01 | 105.07 | 78.54 | 74.31 | 94.61 | ||||||
方法1 | 91.25 | 97.97 | 107.36 | 75.83 | 75.53 | 99.60 | ||||||
方法2 | 93.54 | 105.54 | 112.83 | 84.46 | 84.37 | 99.89 | ||||||
方法3 | 93.54 | 106.79 | 114.16 | 83.95 | 85.78 | 102.17 | ||||||
方法4 | 99.63 | 132.33 | 132.84 | 92.36 | 100.38 | 108.68 |
Table 5 Predictive performance of photovoltaic power generation under rainy weather with 4 h lead time
方法 | 置信度95% | 置信度85% | ||||||||||
EPICP/% | EPINAW | EICE | EPICP/% | EPINAW | EICE | |||||||
本文方法 | 90.41 | 95.01 | 105.07 | 78.54 | 74.31 | 94.61 | ||||||
方法1 | 91.25 | 97.97 | 107.36 | 75.83 | 75.53 | 99.60 | ||||||
方法2 | 93.54 | 105.54 | 112.83 | 84.46 | 84.37 | 99.89 | ||||||
方法3 | 93.54 | 106.79 | 114.16 | 83.95 | 85.78 | 102.17 | ||||||
方法4 | 99.63 | 132.33 | 132.84 | 92.36 | 100.38 | 108.68 |
1 | 2023年前三季度光伏发电建设运行情况[EB/OL]. (2023-11-03)[2024-08-20]. https://www.nea.gov.cn/2023-11/03/c_1310748819.htm. |
2 | 李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55 (11): 149- 154. |
LI Fengjun, WANG Lei, ZHAO Jian, et al. Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-Net[J]. Electric Power, 2022, 55 (11): 149- 154. | |
3 | 刘洁, 林舜江, 梁炜焜, 等. 基于高阶马尔可夫链和高斯混合模型的光伏出力短期概率预测[J]. 电网技术, 2023, 47 (1): 266- 274. |
LIU Jie, LIN Shunjiang, LIANG Weikun, et al. Short-term probabilistic forecast for power output of photovoltaic station based on high order Markov chain and Gaussian mixture model[J]. Power System Technology, 2023, 47 (1): 266- 274. | |
4 |
林帆, 张耀, 东琦, 等. 基于分位数插值和深度自回归网络的光伏出力概率预测[J]. 电力系统自动化, 2023, 47 (9): 79- 87.
DOI |
LIN Fan, ZHANG Yao, DONG Qi, et al. Probability prediction of photovoltaic output based on quantile interpolation and deep autoregressive network[J]. Automation of Electric Power Systems, 2023, 47 (9): 79- 87.
DOI |
|
5 |
赵耀, 高少炜, 李东东, 等. 基于天气相似聚类与QRNN的短期光伏功率区间概率预测[J]. 电力系统自动化, 2023, 47 (23): 152- 161.
DOI |
ZHAO Yao, GAO Shaowei, LI Dongdong, et al. Short-term interval probability prediction of photovoltaic power based on weather similarity clustering and quantile regression neural network[J]. Automation of Electric Power Systems, 2023, 47 (23): 152- 161.
DOI |
|
6 |
JIAO X, LI X S, LIN D Y, et al. A graph neural network based deep learning predictor for spatio-temporal group solar irradiance forecasting[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (9): 6142- 6149.
DOI |
7 |
ZHEN H, NIU D X, WANG K K, et al. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information[J]. Energy, 2021, 231, 120908.
DOI |
8 | 王海军, 居蓉蓉, 董颖华. 基于时空关联特征与B-LSTM模型的分布式光伏功率区间预测[J]. 中国电力, 2024, 57 (7): 74- 80. |
WANG Haijun, JU Rongrong, DONG Yinghua. Distributed photovoltaic power interval prediction based on spatio-temporal correlation feature and B-LSTM model[J]. Electric Power, 2024, 57 (7): 74- 80. | |
9 |
LIAO W L, BAK-JENSEN B, PILLAI J R, et al. Short-term power prediction for renewable energy using hybrid graph convolutional network and long short-term memory approach[J]. Electric Power Systems Research, 2022, 211, 108614.
DOI |
10 | 赵洪山, 孙承妍, 温开云, 等. 无气象信息条件下基于AGCRN的分布式光伏出力超短期预测方法[J]. 高电压技术, 2024, 50 (1): 65- 73. |
ZHAO Hongshan, SUN Chengyan, WEN Kaiyun, et al. Ultra-short-term prediction of distributed photovoltaic power method based on AGCRN in the absence of meteorological information[J]. High Voltage Engineering, 2024, 50 (1): 65- 73. | |
11 | WANG Y Q, FU W J, ZHANG X D, et al. Dynamic directed graph convolution network based ultra-short-term forecasting method of distributed photovoltaic power to enhance the resilience and flexibility of distribution network[J]. IET Generation, Transmission & Distribution, 2024, 18 (2): 337- 352. |
12 | ZHU Y, YANG L, YANG X Z, et al. The regional distributed PV ultra-short-term power forecasting based on static-dynamic spatiotemporal correlation modeling[C]//2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG). Wollongong, Australia. IEEE, 2023: 1–6. |
13 | 马畅. 考虑时空特性的分布式光伏短期概率预测[D]. 北京: 华北电力大学, 2023. |
MA Chang. Short-term probabilistic prediction of distributed photovoltaics considering temporal and spatial characteristics [D]. Beijing: North China Electric Power University, 2023. | |
14 | 官松泽, 唐钰本, 蔡争, 等. 基于Kmeans++-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2023, 44 (12): 170- 174. |
GUAN Songze, TANG Yuben, CAI Zheng, et al. Ultra-short-term forecast of solar irradiance based on Kmeans++-Bi-LSTM[J]. Acta Energiae Solaris Sinica, 2023, 44 (12): 170- 174. | |
15 | CHEN R F, LIU J M, WANG F, et al. Graph neural network-based wind farm cluster speed prediction[C]//2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS). Jinan, China. IEEE, 2020: 982-987. |
16 | 苏向敬, 宇海波, 符杨, 等. 基于DALSTM和联合分位数损失的海上风电功率概率预测[J]. 中国电力, 2023, 56 (11): 10- 19. |
SU Xiangjing, YU Haibo, FU Yang, et al. Probabilistic forecasting of offshore wind power based on dual-stage attentional LSTM and joint quantile loss function[J]. Electric Power, 2023, 56 (11): 10- 19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||