Electric Power ›› 2024, Vol. 57 ›› Issue (10): 46-56.DOI: 10.11930/j.issn.1004-9649.202402028
• Secondary System Planning for Modern Smart Distribution Network • Previous Articles Next Articles
Huaitian MU(
), Hongliang LIAN(
), Juan LIU, Yanqiong LI
Received:2024-02-07
Accepted:2024-05-07
Online:2024-10-23
Published:2024-10-28
Supported by:Huaitian MU, Hongliang LIAN, Juan LIU, Yanqiong LI. Application of Three-Phase Linearized Power Flow and Line Loss Analysis of Distribution Network Driven by Data and Physics Fusion[J]. Electric Power, 2024, 57(10): 46-56.
| 理论线损计算模型 | 线损率/% | |
| 非线性模型 | 7.09 | |
| 物理线性化 | 5.82 | |
| 数据物理融合驱动线性化 | 7.09 |
Table 1 Comparison of theoretical line loss rates of different methods
| 理论线损计算模型 | 线损率/% | |
| 非线性模型 | 7.09 | |
| 物理线性化 | 5.82 | |
| 数据物理融合驱动线性化 | 7.09 |
| 样本数/组 | 计算耗时/s | |
| 150 | 2.59 |
Table 2 Training time of error compensation model
| 样本数/组 | 计算耗时/s | |
| 150 | 2.59 |
| 理论线损计算模型 | ERMS | EMA | ||
| 物理线性化 | ||||
| 数据物理融合驱动线性化 |
Table 3 Theoretical line loss calculation error statistics of different methods
| 理论线损计算模型 | ERMS | EMA | ||
| 物理线性化 | ||||
| 数据物理融合驱动线性化 |
| 理论线损计算模型 | 迭代次数 | 计算耗时/s | ||
| 非线性模型 | 4 | 8.987 | ||
| 线性化模型 | 1 | 0.165 |
Table 4 Number of iterations and calculation time of different methods
| 理论线损计算模型 | 迭代次数 | 计算耗时/s | ||
| 非线性模型 | 4 | 8.987 | ||
| 线性化模型 | 1 | 0.165 |
| 数据驱动模型 | ERMS | EMA | ||
| M1 | ||||
| M2 |
Table 5 Calculation accuracy of theoretical line loss under different data-driven models
| 数据驱动模型 | ERMS | EMA | ||
| M1 | ||||
| M2 |
| 1 | 江木, 孙云超, 刘巨. 10 kV配电网理论线损计算方法及应用对比[J]. 供用电, 2019, 36 (11): 78- 83. |
| JIANG Mu, SUN Yunchao, LIU Ju. Theoretical line loss calculation method and application comparison for 10 kV distribution network[J]. Distribution & Utilization, 2019, 36 (11): 78- 83. | |
| 2 | 阮琪, 杨超, 王涵锋. 不同密度采集数据的配电网线损连续计算方法[J]. 电工材料, 2023, (6): 90- 94. |
| RUAN Qi, YANG Chao, WANG Hanfeng. Line loss calculation method for distribution network considering collected data of different densities[J]. Electrical Engineering Materials, 2023, (6): 90- 94. | |
| 3 |
丁心海, 罗毅芳, 刘巍, 等. 改进配电网线损计算方法的几点建议[J]. 电力系统自动化, 2001, 25 (13): 57- 60.
DOI |
|
DING Xinhai, LUO Yifang, LIU Wei, et al. Proposalson improving the current methods for calculating line lossesof distribution network[J]. Automation of Electric Power Systems, 2001, 25 (13): 57- 60.
DOI |
|
| 4 | 宋智强, 黄耀辉, 赵化时, 等. 含多类型直流的交直流混联电网潮流计算方法适用性分析[J]. 电力自动化设备, 2023. |
| SONG Zhiqiang, HUANG Yaohui, ZHAO Huashi, et al. Applicability analysis of classical power flow calculation methods for AC/DC hybrid power systems with multi-type DC links[J]. Electric Power Automation Equipment, 2023. | |
| 5 |
王磊, 张建宾, 余昆, 等. 基于典型负荷曲线的配电网线损计算方法研究[J]. 智慧电力, 2020, 48 (3): 124- 130.
DOI |
|
WANG Lei, ZHANG Jianbin, YU Kun, et al. Calculation method of distribution line loss based on typical load curve[J]. Smart Power, 2020, 48 (3): 124- 130.
DOI |
|
| 6 | 马喜平, 贾嵘, 梁琛, 等. 高比例新能源接入下电力系统降损研究综述[J]. 电网技术, 2022, 46 (11): 4305- 4315. |
| MA Xiping, JIA Rong, LIANG Chen, et al. Review of researches on loss reduction in context of high penetration of renewable power generation[J]. Power System Technology, 2022, 46 (11): 4305- 4315. | |
| 7 | 王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34 (2): 10- 14, 23. |
| WANG Chengshan, LI Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34 (2): 10- 14, 23. | |
| 8 | 田阳, 李志兵, 田宇, 等. 高比例新能源接入下快速真空断路器容性开合能力提升研究[J]. 电网技术, 2024, 48 (6): 2670- 2679. |
| TIAN Yang, LI Zhibing, TIAN Yu, et al. Research on the improvement of capacitive opening and closing ability of fast circuit breaker under high proportion of new energy access[J]. Power System Technology, 2024, 48 (6): 2670- 2679. | |
| 9 | 章博, 刘晟源, 林振智, 等. 高比例新能源下考虑需求侧响应和智能软开关的配电网重构[J]. 电力系统自动化, 2021, 45 (8): 86- 94. |
| ZHANG Bo, LIU Shengyuan, LIN Zhenzhi, et al. Distribution network reconfiguration with high penetration of renewable energy considering demand response and soft open point[J]. Automation of Electric Power Systems, 2021, 45 (8): 86- 94. | |
| 10 | 康重庆, 杜尔顺, 郭鸿业, 等. 新型电力系统的六要素分析[J]. 电网技术, 2023, 47 (5): 1741- 1750. |
| KANG Chongqing, DU Ershun, GUO Hongye, et al. Primary exploration of six essential factors in new power system[J]. Power System Technology, 2023, 47 (5): 1741- 1750. | |
| 11 |
KIM J, SEOK J K, MULJADI E, et al. Adaptive Q–V scheme for the voltage control of a DFIG-based wind power plant[J]. IEEE Transactions on Power Electronics, 2016, 31 (5): 3586- 3599.
DOI |
| 12 | 巨云涛, 王健凯, 陈希, 等. 计及详细源荷模型的三相独立微电网连续潮流计算方法[J]. 电网技术, 2022, 46 (2): 718- 727. |
| JU Yuntao, WANG Jiankai, CHEN Xi, et al. Continuous power flow calculation method for three-phase isolated microgrid considering detailed source and load models[J]. Power System Technology, 2022, 46 (2): 718- 727. | |
| 13 |
肖峻, 周玉鹏, 鲍震宇. 配电系统优化问题建模中的潮流模型选择方法[J]. 电力系统自动化, 2023, 47 (15): 170- 178.
DOI |
|
XIAO Jun, ZHOU Yupeng, BAO Zhenyu. Power flow model selection method for modeling distribution system optimization problem[J]. Automation of Electric Power Systems, 2023, 47 (15): 170- 178.
DOI |
|
| 14 |
LEHMANN K, GRASTIEN A, VAN HENTENRYCK P. AC-feasibility on tree networks is NP-hard[J]. IEEE Transactions on Power Systems, 2016, 31 (1): 798- 801.
DOI |
| 15 |
YANG Z F, XIE K G, YU J, et al. A general formulation of linear power flow models: basic theory and error analysis[J]. IEEE Transactions on Power Systems, 2019, 34 (2): 1315- 1324.
DOI |
| 16 | 向明旭, 杨知方, 余娟, 等. 配电网线性潮流模型通式及误差分析[J]. 中国电机工程学报, 2021, 41 (6): 2053- 2063, 13. |
| XIANG Mingxu, YANG Zhifang, YU Juan, et al. Linear power flow model in distribution network: unified expression and error analysis[J]. Proceedings of the CSEE, 2021, 41 (6): 2053- 2063, 13. | |
| 17 |
别朝红, 王锡凡. 雅可比矩阵的奇异性检测和网络孤岛的判断[J]. 电力系统自动化, 1998, 22 (11): 24- 27.
DOI |
|
BIE Zhaohong, WANG Xifan. Detection of Jacobian singularity and network islanding[J]. Automation of Electric Power Systems, 1998, 22 (11): 24- 27.
DOI |
|
| 18 |
FAN Z X, YANG Z F, YU J. Error bound restriction of linear power flow model[J]. IEEE Transactions on Power Systems, 2022, 37 (1): 808- 811.
DOI |
| 19 |
GARCES A. A linear three-phase load flow for power distribution systems[J]. IEEE Transactions on Power Systems, 2016, 31 (1): 827- 828.
DOI |
| 20 |
YUAN Z. Formulations and approximations of branch flow model for general power networks[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10 (5): 1110- 1126.
DOI |
| 21 |
CHEN J Q, WU W C, ROALD L A. Data-driven piecewise linearization for distribution three-phase stochastic power flow[J]. IEEE Transactions on Smart Grid, 2022, 13 (2): 1035- 1048.
DOI |
| 22 |
LIU Y X, ZHANG N, WANG Y, et al. Data-driven power flow linearization: a regression approach[J]. IEEE Transactions on Smart Grid, 2019, 10 (3): 2569- 2580.
DOI |
| 23 |
LI P H, WU W C, WANG X M, et al. A data-driven linear optimal power flow model for distribution networks[J]. IEEE Transactions on Power Systems, 2023, 38 (1): 956- 959.
DOI |
| 24 |
LIU Y T, LI Z S, SUN S M. A data-driven method for online constructing linear power flow model[J]. IEEE Transactions on Industry Applications, 2023, 59 (5): 5411- 5419.
DOI |
| 25 |
SHAO Z T, ZHAI Q Z, WU J, et al. Data based linear power flow model: investigation of a least-squares based approximation[J]. IEEE Transactions on Power Systems, 2021, 36 (5): 4246- 4258.
DOI |
| 26 |
TAN Y, CHEN Y Y, LI Y, et al. Linearizing power flow model: a hybrid physical model-driven and data-driven approach[J]. IEEE Transactions on Power Systems, 2020, 35 (3): 2475- 2478.
DOI |
| 27 |
巨云涛, 杨明友, 吴文传. 适用于配电网三相优化潮流的数据物理融合驱动线性化方法[J]. 电力系统自动化, 2022, 46 (13): 43- 52.
DOI |
|
JU Yuntao, YANG Mingyou, WU Wenchuan. Hybrid data-physical-driven linearization method for three-phase optimal power flow in distribution network[J]. Automation of Electric Power Systems, 2022, 46 (13): 43- 52.
DOI |
|
| 28 |
BAZRAFSHAN M, GATSIS N. Comprehensive modeling of three-phase distribution systems via the bus admittance matrix[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 2015- 2029.
DOI |
| 29 |
SHAO Z T, ZHAI Q Z, GUAN X H. Physical-model-aided data-driven linear power flow model: an approach to address missing training data[J]. IEEE Transactions on Power Systems, 2023, 38 (3): 2970- 2973.
DOI |
| 30 | YANG J, REN G X, LUO L, et al. CNN-LSTM combined prediction algorithm for transmission line loss rate based on improved SSA[C]//2022 5th International Conference on Electronics and Electrical Engineering Technology (EEET). Beijing, China. IEEE, 2022: 83–89. |
| 31 | HUANG H R. Line loss prediction of distribution network based on BP neural network[J]. Scientific Programming, 2022, 2022, 6105316. |
| [1] | HU Xuekai, MENG Liang, LI Lei, YANG Yang, YIN Yilin, LEI Wanjun. Oscillation Suppression Strategy for Droop Control Converter Based on Active Harmonic Resistance Control [J]. Electric Power, 2025, 58(9): 44-53, 67. |
| [2] | WANG Li, JIANG Yuxiang, ZENG Xiangjun, ZHAO Bin, LI Junhao. Secondary Frequency Control of Islanded Microgrid Based on Deep Reinforcement Learning [J]. Electric Power, 2025, 58(5): 176-188. |
| [3] | Jingbo ZHAO, Wenbo LI, Xinyao ZHU, Qingbin SUN, Quanrui HAO. Adaptive Control Strategy for Receiving-end Disturbance of Offshore Wind Power through MMC-HVDC System [J]. Electric Power, 2025, 58(1): 26-38. |
| [4] | Zhongran YAO, Liying SUN. Balanced Control Strategy of Distributed Energy Storage SOC Considering Line Impedance [J]. Electric Power, 2024, 57(9): 238-246. |
| [5] | Jingzhong ZHANG, Fei MENG, Yang SUN, Huixia YU. Reactive Power Optimization Control for Renewable Energy in Distribution Networks Considering Active Power Uncertainties [J]. Electric Power, 2024, 57(3): 51-59. |
| [6] | Xiangyang XIA, Daiyu JIANG, Xiaoyong ZENG, Fen GONG, Xiaozhong WU, Xia HUA, Yanpeng LUO, Chao SHI. Research on Control Strategy of Power Conversion System Based on Virtual Oscillator Control [J]. Electric Power, 2024, 57(11): 70-77. |
| [7] | WANG Jihua, YE Xiaming, QIN Ruyi, YING Fangyi, YU Jiajie. Research on Coordinated Control Strategy of Hydrogen-Electric Hybrid Energy Storage Microgrid Based on Exponential-Function-Based Droop Control [J]. Electric Power, 2023, 56(7): 43-53. |
| [8] | LIN jinjiao, KONG Xiangping, WANG Chuyang, ZHANG Qiuyue, ZHENG Junchao, ZHANG Li. Droop Control Based Auxiliary Power Compensation for Power Systems with Flexible DC Transmission [J]. Electric Power, 2023, 56(4): 119-129. |
| [9] | ZHOU Wenjun, CAO Yi, LI Jie, JIN Tao, CHEN Wenjian, ZHOU Xia. Reactive Voltage Emergency Control Strategy of Wind-Thermal-Bundled DC Transmission System Considering Wind Farm Regulation Margin [J]. Electric Power, 2023, 56(4): 77-87. |
| [10] | ZHANG Yu, WANG Hongxi, WANG Pu. Flatness-Based Control of AC / DC Hybrid Microgrid Interconnected Converter [J]. Electric Power, 2022, 55(7): 102-109,120. |
| [11] | YANG Lei, WANG Zhichao, ZHOU Xin, LI Shengnan, HE Peng, XIANG Chuan, ZHANG Jie, WANG Delin. Frequency Stability Control Strategy for Large-scale Grid Connections with DFIG Units [J]. Electric Power, 2021, 54(5): 186-194. |
| [12] | WANG Tianxiang, CHENG Xuekun, LI Weichao, ZHENG Jinxin. Primary Frequency Control Strategy for Wind Farms Based on Variable Parameter De-loading Control [J]. Electric Power, 2021, 54(12): 94-101. |
| [13] | WANG Yue, YANG Guohua, ZHUANG Jiayi, PAN Huan, ZOU Yuqi, HAN Shijun. Zero-Error Frequency Regulation Control Method for Microgrids Based on Consensus Algorithm [J]. Electric Power, 2020, 53(10): 187-191. |
| [14] | WANG Lingyun, ZHOU Xuanqing, LI Sheng, LIU Yuan. Research on Peer to Peer Control Strategy for Microgrid Based on the Improved Power Loop [J]. Electric Power, 2017, 50(9): 171-177. |
| [15] | YU Hong, LI Lingli, LUO Jiping, XIANG Min. Intermittent Micro Source Control in a Networking State [J]. Electric Power, 2015, 48(3): 144-149. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
