Electric Power ›› 2024, Vol. 57 ›› Issue (9): 169-180.DOI: 10.11930/j.issn.1004-9649.202402011
• Key Technologies of Urban Power Grid for New Power System • Previous Articles Next Articles
Dongli JIA(), Xiaoyu YANG(
), Keyan LIU(
), Xueshun YE(
), Zhao LI(
)
Received:
2024-02-03
Accepted:
2024-05-03
Online:
2024-09-23
Published:
2024-09-28
Supported by:
Dongli JIA, Xiaoyu YANG, Keyan LIU, Xueshun YE, Zhao LI. Distribution Network Coordinate Operation Considering Net Load Uncertainty[J]. Electric Power, 2024, 57(9): 169-180.
参数 | DG1 | DG2 | DG3 | DG4 | 上级电网 | |||||
初始出力 | 0 | 0 | 0 | 0 | 0 | |||||
有功出力上限/MW | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
有功出力下限/MW | 0 | 0 | 0 | 0 | 0 | |||||
上爬速率/(MW·h–1) | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
下爬速率/(MW·h–1) | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
运行成本系数a/(元·MW–2) | 0 | 0 | 0 | 0 | 0 | |||||
运行成本系数b/(元·MW–2) | 127 | 110 | 115 | 118 | 100 | |||||
运行成本系数c/元 | 37 | 25 | 27 | 31 | 0 |
Table 1 The specific parameters of the unit and the superior power grid can be adjusted
参数 | DG1 | DG2 | DG3 | DG4 | 上级电网 | |||||
初始出力 | 0 | 0 | 0 | 0 | 0 | |||||
有功出力上限/MW | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
有功出力下限/MW | 0 | 0 | 0 | 0 | 0 | |||||
上爬速率/(MW·h–1) | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
下爬速率/(MW·h–1) | 0.4 | 1.2 | 1.2 | 0.6 | 2 | |||||
运行成本系数a/(元·MW–2) | 0 | 0 | 0 | 0 | 0 | |||||
运行成本系数b/(元·MW–2) | 127 | 110 | 115 | 118 | 100 | |||||
运行成本系数c/元 | 37 | 25 | 27 | 31 | 0 |
结果 | 总净负荷可 接纳域/MW | 总成本/元 | 运行成本/元 | 备用成本/元 | ||||
第1层 | 21.271 | 241.868 | ||||||
第2层 | 21.271 | 222.170 | ||||||
第3层 | 21.271 | 222.170 |
Table 2 Optimization results of this model under 20% perturbation
结果 | 总净负荷可 接纳域/MW | 总成本/元 | 运行成本/元 | 备用成本/元 | ||||
第1层 | 21.271 | 241.868 | ||||||
第2层 | 21.271 | 222.170 | ||||||
第3层 | 21.271 | 222.170 |
系数(w1, w2, w3) | 电压偏差/ p.u. | 总成本/ 元 | 运行成本/ 元 | 净负荷可 接纳域/MW | ||||
(0.33, 0.33, 0.33) | 6.2 | 31.906 | ||||||
(0.5, 0.2, 0.3) | 6.3 | 31.906 | ||||||
(0.3, 0.5, 0.2) | 6.7 | 31.730 | ||||||
(0.6, 0.2, 0.2) | 6.2 | 31.906 | ||||||
(0.2, 0.6, 0.2) | 6.4 | 31.730 | ||||||
(0.2, 0.2, 0.6) | 6.1 | 31.305 |
Table 3 Optimization results of different weight factors by linear weighting method
系数(w1, w2, w3) | 电压偏差/ p.u. | 总成本/ 元 | 运行成本/ 元 | 净负荷可 接纳域/MW | ||||
(0.33, 0.33, 0.33) | 6.2 | 31.906 | ||||||
(0.5, 0.2, 0.3) | 6.3 | 31.906 | ||||||
(0.3, 0.5, 0.2) | 6.7 | 31.730 | ||||||
(0.6, 0.2, 0.2) | 6.2 | 31.906 | ||||||
(0.2, 0.6, 0.2) | 6.4 | 31.730 | ||||||
(0.2, 0.2, 0.6) | 6.1 | 31.305 |
电压偏差/ p.u. | 总成本/ 元 | 运行成本/ 元 | 净负荷可 接纳域/MW | |||||
第1层 | 16.3 | 31.906 | ||||||
第2层(λ=1) | 17.6 | 31.906 | ||||||
第3层(λ=1, π=1) | 10.3 | 31.906 | ||||||
第2层(λ=0.5) | 19.3 | 15.953 | ||||||
第3层(λ=0.5, π=1) | 11.7 | 15.953 | ||||||
第3层(λ=1, π=1.2) | 6.1 | 31.906 |
Table 4 Optimization results of different λ and π values of priority objective programming method
电压偏差/ p.u. | 总成本/ 元 | 运行成本/ 元 | 净负荷可 接纳域/MW | |||||
第1层 | 16.3 | 31.906 | ||||||
第2层(λ=1) | 17.6 | 31.906 | ||||||
第3层(λ=1, π=1) | 10.3 | 31.906 | ||||||
第2层(λ=0.5) | 19.3 | 15.953 | ||||||
第3层(λ=0.5, π=1) | 11.7 | 15.953 | ||||||
第3层(λ=1, π=1.2) | 6.1 | 31.906 |
结果 | 总净负荷可 接纳域/MW | 总成本/元 | 运行成本/元 | 备用成本/元 | ||||
第1层结果 | 31.906 | 359.256 | ||||||
第2层结果 | 31.906 | 339.668 | ||||||
第3层结果 | 31.906 | 339.668 |
Table 5 Optimization results of this model under 32% perturbation
结果 | 总净负荷可 接纳域/MW | 总成本/元 | 运行成本/元 | 备用成本/元 | ||||
第1层结果 | 31.906 | 359.256 | ||||||
第2层结果 | 31.906 | 339.668 | ||||||
第3层结果 | 31.906 | 339.668 |
1 | 谢宇翔, 张雪敏, 罗金山, 等. 新能源大规模接入下的未来电力系统演化模型[J]. 中国电机工程学报, 2018, 38 (2): 421- 430, 673. |
XIE Yuxiang, ZHANG Xuemin, LUO Jinshan, et al. Evolution model for future power system under massive penetration of renewable energy[J]. Proceedings of the CSEE, 2018, 38 (2): 421- 430, 673. | |
2 |
SALEHI J, ABDOLAHI A. Optimal scheduling of active distribution networks with penetration of PHEV considering congestion and air pollution using DR program[J]. Sustainable Cities and Society, 2019, 51, 101709.
DOI |
3 | 高延涛. 含风电电力系统的多目标随机优化调度[J]. 通信电源技术, 2017, 34 (3): 22- 23, 26. |
GAO Yantao. Multi-objective stochastic optimal dispatch of power system with wind power[J]. Telecom Power Technology, 2017, 34 (3): 22- 23, 26. | |
4 | 张刘冬, 袁宇波, 孙大雁, 等. 基于两阶段鲁棒区间优化的风储联合运行调度模型[J]. 电力自动化设备, 2018, 38 (12): 59- 66, 93. |
ZHANG Liudong, YUAN Yubo, SUN Dayan, et al. Joint operation model of wind-storage system based on two-stage robust interval optimization[J]. Electric Power Automation Equipment, 2018, 38 (12): 59- 66, 93. | |
5 | 田宇, 黄婧, 谢枭, 等. 主动配电网无功补偿和OLTC鲁棒多目标优化配置[J]. 中国电力, 2023, 56 (3): 94- 99. |
TIAN Yu, HUANG Jing, XIE Xiao, et al. Multi-objective optimal allocation of reactive compensation and OLTC in active distribution network[J]. Electric Power, 2023, 56 (3): 94- 99. | |
6 | 黄瑶玲, 杨楠, 刘浔, 等. 分布式光伏电源接入对配电网影响[J]. 电工材料, 2022, (1): 78- 80. |
HUANG Yaoling, YANG Nan, LIU Xun, et al. Impact of distributed photovoltaic power access on distribution network[J]. Electrical Engineering Materials, 2022, (1): 78- 80. | |
7 | LIU R, ZHONG J C, QI Y L, et al. Research on evaluation and influencing factors of consumption capacity of distributed new energy[C]//2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Shanghai, China. IEEE, 2022: 811–816. |
8 | 李翠萍, 朱文超, 李军徽, 等. 分布式电源接入中压配电网的运行方案研究[J]. 东北电力大学学报, 2023, 43 (4): 57- 64. |
LI Cuiping, ZHU Wenchao, LI Junhui, et al. Research on the operation scheme of distributed generation access to medium voltage distribution network[J]. Journal of Northeast Electric Power University, 2023, 43 (4): 57- 64. | |
9 | SUN B, MA Y H, ZHENG G D, et al. Assessment of new energy consumption capability of receiver grid[C]//2022 4th International Conference on Power and Energy Technology (ICPET). Beijing, China. IEEE, 2022: 1143–1146. |
10 | 李增辉, 于钊, 孙大雁, 等. 新能源预测纳入备用对平衡和消纳的影响研究[J]. 电网技术, 2024, 48 (4): 1393- 1402. |
LI Zenghui, YU Zhao, SUN Dayan, et al. Research on influences to power balance & new energy consumption of taken-into-account proportion of new energy's predicted output in day-ahead power reserve[J]. Power System Technology, 2024, 48 (4): 1393- 1402. | |
11 | 李成龙, 田有文, 苗洁. 基于改进粒子群算法的新能源消纳最优化调度[J]. 农业科技与装备, 2023, (6): 63- 66. |
LI Chenglong, TIAN Youwen, MIAO Jie. Optimized scheduling of new energy consumption based on the improved particle swarm algorithm[J]. Agricultural Science & Technology and Equipment, 2023, (6): 63- 66. | |
12 | 黎立丰, 刘春晓, 朱浩骏, 等. 考虑网络安全约束的可再生能源消纳能力评估方法[J]. 电力科学与技术学报, 2023, 38 (4): 162- 168. |
LI Lifeng, LIU Chunxiao, ZHU Haojun, et al. Absorptive capability evaluation method of renewable energy considering security constraints of power grid[J]. Journal of Electric Power Science and Technology, 2023, 38 (4): 162- 168. | |
13 | 李建芳, 丛鹏伟, 孟晓丽, 等. 基于自适应粒子群算法的主动配电网日前有功调度[J]. 南方电网技术, 2015, 9 (11): 85- 91. |
LI Jianfang, CONG Pengwei, MENG Xiaoli, et al. Day-ahead active power scheduling of active distribution network based on adaptive particle swarm algorithm[J]. Southern Power System Technology, 2015, 9 (11): 85- 91. | |
14 | FENG K H, SONG C H, HUANG B B, et al. Research on the automatic control of grid peak regulation units to improve the new energy consumption level[C]//2022 12th International Conference on Power and Energy Systems (ICPES). Guangzhou, China. IEEE, 2022: 504–508. |
15 |
刘建伟, 李学斌, 刘晓鸥. 有源配电网中分布式电源接入与储能配置[J]. 发电技术, 2022, 43 (3): 476- 484.
DOI |
LIU Jianwei, LI Xuebin, LIU Xiaoou. Distributed power access and energy storage configuration in active distribution network[J]. Power Generation Technology, 2022, 43 (3): 476- 484.
DOI |
|
16 | 马喜平, 李亚昕, 梁琛, 等. 考虑高比例多元调节资源互动的配电网无功优化降损方法[J]. 中国电力, 2024, 57 (1): 123- 132. |
MA Xiping, LI Yaxin, LIANG Chen, et al. Reactive power optimization for loss reduction of distribution network considering interactions of high penetration level of multiple regulating energy resources[J]. Electric Power, 2024, 57 (1): 123- 132. | |
17 | XIONG C Y, LIU H M, YANG Z H, et al. Optimal reactive power dispatch of distribution network considering voltage security[C]//2022 IEEE Symposium Series on Computational Intelligence (SSCI). Singapore, Singapore. IEEE, 2022: 1362-1367. |
18 | 马喜平, 董晓阳, 李亚昕, 等. 考虑新能源接入的电网有功无功协调双层优化策略研究[J]. 电网与清洁能源, 2024, 40 (1): 137- 142, 149. |
MA Xiping, DONG Xiaoyang, LI Yaxin, et al. Research on the two-layer optimal strategy of active power and reactive power coordination considering integration of new energy[J]. Power System and Clean Energy, 2024, 40 (1): 137- 142, 149. | |
19 | 卢锦玲, 赵增辉, 胡兴华, 等. 计及光伏波动性的主动配电网双层有功无功协调优化[J/OL]. 电力系统及其自动化学报: 1–9 [2023-08-15].https://doi.org/10.19635/j.cnki.csu-epsa.001321. |
LU Jinling, ZHAO Zenghui, HU Xinghua, et al. Dual-layer Active and Reactive Power Coordination Optimization of Active Distribution Network Considering Photovoltaic Volatility[J/OL]. Proceedings of the CSU-EPSA: 1–9 [2023-08-15].https://doi.org/10.19635/j.cnki.csu-epsa.001321. | |
20 | 焦昊, 殷岩岩, 吴晨, 等. 基于安全强化学习的主动配电网有功-无功协调优化调度[J]. 中国电力, 2024, 57 (3): 43- 50. |
JIAO Hao, YIN Yanyan, WU Chen, et al. Coordinated optimization of active and reactive power of active distribution network based on safety reinforcement learning[J]. Electric Power, 2024, 57 (3): 43- 50. | |
21 | 米阳, 申杰, 卢长坤, 等. 考虑含储能的三端智能软开关与需求侧响应的主动配电网有功无功协调优化[J]. 电力系统保护与控制, 2024, 52 (3): 104- 118. |
MI Yang, SHEN Jie, LU Changkun, et al. Active and reactive power coordination optimization of an active distribution network considering a three-terminal soft open point with energy storage and demand response[J]. Power System Protection and Control, 2024, 52 (3): 104- 118. | |
22 | 王吉利, 薛飞, 黄玉雄, 等. 数据驱动的区域电网新能源消纳受阻因素智能辨识方法[J]. 智慧电力, 2022, 50 (10): 95- 101. |
WANG Jili, XUE Fei, HUANG Yuxiong, et al. Data-driven intelligent identification method of hindering factors for renewable energy consumption in regional power grids[J]. Smart Power, 2022, 50 (10): 95- 101. | |
23 | SHERALI H D, SOYSTER A L. Preemptive and nonpreemptive multi-objective programming: relationship and counterexamples[J]. Journal of Optimization Theory and Applications, 1983, 39 (2): 173- 186. |
24 | 刘帅, 王明强, 丁天池, 等. 考虑净负荷最佳可接纳域的主动配电网电源规划[J]. 电网技术, 2023, 47 (6): 2239- 2254. |
LIU Shuai, WANG Mingqiang, DING Tianchi, et al. Generation planning of active distribution network considering optimal admissible region of net load[J]. Power System Technology, 2023, 47 (6): 2239- 2254. | |
25 | 孙浩, 张磊, 许海林, 等. 微电网日内调度计划的混合整数规划模型[J]. 电力系统自动化, 2015, 39 (19): 21- 27. |
SUN Hao, ZHANG Lei, XU Hailin, et al. Mixed integer programming model for microgrid intra-day scheduling[J]. Automation of Electric Power Systems, 2015, 39 (19): 21- 27. | |
26 | YE H X. Surrogate affine approximation based co-optimization of transactive flexibility, uncertainty, and energy[J]. IEEE Transactions on Power Systems, 2018, 33 (4): 4084- 4096. |
27 | SOYSTER A L. Technical note—convex programming with set-inclusive constraints and applications to inexact linear programming[J]. Operations Research, 1973, 21 (5): 1154- 1157. |
28 | BROOKE A, KENDRICK D, MEERAUS A. GAMS: a user's guide[M]. Washington D. C: GAMS Development Corporation, 1992. |
29 | 于丹文, 杨明, 翟鹤峰, 等. 鲁棒优化在电力系统调度决策中的应用研究综述[J]. 电力系统自动化, 2016, 40 (7): 134- 143, 148. |
YU Danwen, YANG Ming, ZHAI Hefeng, et al. An overview of robust optimization used for power system dispatch and decision-making[J]. Automation of Electric Power Systems, 2016, 40 (7): 134- 143, 148. |
[1] | WANG Shijun, PING Chang, XUE Guobin. Synergic Optimization of Community Energy Internet Considering the Shared Energy Storage [J]. Electric Power, 2018, 51(8): 77-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||