| 1 |
王少华, 胡文堂, 何文林, 等. 自然积污绝缘子的污闪电压和泄漏电流特性试验研究[J]. 电网技术, 2013, 37 (10): 2855- 2860.
|
|
WANG Shaohua, HU Wentang, HE Wenlin, et al. Experimental research on pollution flashover voltage and leakage current characteristics of naturally polluted insulators[J]. Power System Technology, 2013, 37 (10): 2855- 2860.
|
| 2 |
蒋兴良, 赵世华, 毕茂强, 等. 污秽绝缘子闪络特性与泄漏电流特性研究[J]. 中国电机工程学报, 2013, 33 (31): 220- 226, 27.
|
|
JIANG Xingliang, ZHAO Shihua, BI Maoqiang, et al. Research on flashover performance and leakage current performance of polluted insulators[J]. Proceedings of the CSEE, 2013, 33 (31): 220- 226, 27.
|
| 3 |
宿志一, 李庆峰. 我国电网防污闪措施的回顾和总结[J]. 电网技术, 2010, 34 (12): 124- 130.
|
|
SU Zhiyi, LI Qingfeng. Historical review and summary on measures against pollution flashover occurred in power grids in China[J]. Power System Technology, 2010, 34 (12): 124- 130.
|
| 4 |
何昱燊, 张志劲, 傅海涛, 等. 自然环境下覆冰绝缘子长串交流闪络电压及电弧发展现象[J]. 电网技术, 2021, 45 (7): 2904- 2912.
|
|
HE Yushen, ZHANG Zhijin, FU Haitao, et al. AC flashover voltage and arc development of long insulators strings in natural icing environment[J]. Power System Technology, 2021, 45 (7): 2904- 2912.
|
| 5 |
姜新建, 董弘川, 王黎明, 等. 用有效盐密作为表征污秽度的新方法[J]. 高电压技术, 2017, 43 (12): 3869- 3875.
|
|
JIANG Xinjian, DONG Hongchuan, WANG Liming, et al. New method to describe contamination degree of insulators by effective equivalent salt deposit density[J]. High Voltage Engineering, 2017, 43 (12): 3869- 3875.
|
| 6 |
张志劲, 卢炳宏, 傅海涛, 等. 基于XP-160污秽体积分数的绝缘子积污表征[J]. 电网技术, 2021, 45 (9): 3737- 3744.
|
|
ZHANG Zhijin, LU Binghong, FU Haitao, et al. Characterization of insulator contamination based on XP-160 pollution volume fraction[J]. Power System Technology, 2021, 45 (9): 3737- 3744.
|
| 7 |
王尧平, 李特, 姜凯华, 等. 基于气象特征挖掘与AdaBoost-MEA-ELM模型的绝缘子盐密预测[J]. 中国电力, 2023, 56 (9): 157- 167.
|
|
WANG Yaoping, LI Te, JIANG Kaihua, et al. Prediction of Insulator ESDD based on meteorological feature mining and AdaBoost-MEA-ELM model[J]. Electric Power, 2023, 56 (9): 157- 167.
|
| 8 |
SLAMA M E, BEROUAL A, HADI H. Influence of the linear non-uniformity of pollution layer on the insulator flashover under impulse voltage-estimation of the effective pollution thickness[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 2 (18): 384- 392.
|
| 9 |
张志劲, 杨晟欢, 蒋兴良, 等. 迎背风不均匀污秽下支柱绝缘子直流污闪特性[J]. 电网技术, 2020, 44 (1): 354- 360.
|
|
ZHANG Zhijin, YANG Shenghuan, JIANG Xingliang, et al. DC flashover characteristics of post insulators under non-uniform pollution between windward and leeward sides[J]. Power System Technology, 2020, 44 (1): 354- 360.
|
| 10 |
金立军, 田治仁, 高凯, 等. 基于红外与可见光图像信息融合的绝缘子污秽等级识别[J]. 中国电机工程学报, 2016, 36 (13): 3682- 3691, 3389.
|
|
JIN Lijun, TIAN Zhiren, GAO Kai, et al. Discrimination of insulator contamination grades using information fusion of infrared and visible images[J]. Proceedings of the CSEE, 2016, 36 (13): 3682- 3691, 3389.
|
| 11 |
王丰华, 刘国坚, 张宏钊, 等. 基于改进C-V模型的外绝缘放电紫外图像特征量提取[J]. 高电压技术, 2018, 44 (8): 2525- 2532.
|
|
WANG Fenghua, LIU Guojian, ZHANG Hongzhao, et al. Ultraviolet image parameters extraction of insulation surface discharge based on improved C-V model[J]. High Voltage Engineering, 2018, 44 (8): 2525- 2532.
|
| 12 |
DOUGLAS B, GAMAL E, SUN D W. Non-destructive of chemical composition intact and minced pork using near-infrared hyperspectral imaging[J]. Food Chemistry, 2013, 138, 1162- 1171.
|
| 13 |
KONG Y, LIU Y, GENG J, et al. Pixel-level assessment model of contamination conditions of composite insulators based on hyperspectral imaging technology and a semi-supervised ladder network[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30 (1): 326- 335.
|
| 14 |
邱彦, 张血琴, 郭裕钧, 等. 基于高光谱技术的绝缘子污秽等级检测方法[J]. 高电压技术, 2019, 45 (11): 3587- 3594.
|
|
QIU Yan, ZHANG Xueqin, GUO Yujun, et al. Detection method of insulator contamination grades based on hyperspectral technique[J]. High Voltage Engineering, 2019, 45 (11): 3587- 3594.
|
| 15 |
邱彦, 郭裕钧, 张血琴, 等. 基于高光谱技术的绝缘子污秽成分识别方法[J]. 高电压技术, 2020, 46 (11): 4023- 4030.
|
|
QIU Yan, GUO Yujun, ZHANG Xueqin, et al. Identification method of insulator pollution components based on hyperspectral technology[J]. High Voltage Engineering, 2020, 46 (11): 4023- 4030.
|
| 16 |
马欢, 郭裕钧, 张血琴, 等. 基于高光谱技术的绝缘子污秽含水量检测[J]. 高电压技术, 2020, 46 (4): 1396- 1404.
|
|
MA Huan, GUO Yujun, ZHANG Xueqin, et al. Moisture content detection of insulator contamination based on hyperspectral technology[J]. High Voltage Engineering, 2020, 46 (4): 1396- 1404.
|
| 17 |
MANOLAKIS D, MARDEN D, SHAW G A. Hyperspectral image processing for automatic target detection applications[J]. Lincoln Laboratory Journal, 2003, 14 (1): 79- 116.
|
| 18 |
XIA C J, REN M, WANG B, et al. Acquisition and analysis of hyperspectral data for surface contamination level of insulating materials[J]. Measurement, 2021, 173, 108560.
|
| 19 |
何锦强, 李锐海, 李昊, 等. 基于Yolo v5与Grabcut的架空线路绝缘子可见光图像自动识别与分割方法[J]. 南方电网技术, 2023, 17 (6): 128- 135.
|
|
HE Jinqiang, LI Ruihai, LI Hao, et al. Visible light image automatic recognition and segmentation method for overhead power line insulators based on Yolo v5 and Grabcut[J]. Southern Power System Technology, 2023, 17 (6): 128- 135.
|
| 20 |
WANG B, DONG M, REN M, et al. Automatic fault diagnosis of infrared insulator images based on image instance segmentation and temperature analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (8): 5345- 5355.
|
| 21 |
张二虎, 卞正中. 基于最大熵和互信息最大化的特征点配准算法[J]. 计算机研究与发展, 2004, 41 (7): 1194- 1199.
|
|
ZHANG Erhu, BIAN Zhengzhong. A new robust point registration algorithm by maximization of entropy and mutual information[J]. Journal of Computer Research and Development, 2004, 41 (7): 1194- 1199.
|
| 22 |
肖明, 鲍永亮, 颜仲新. 基于点特征的图像配准方法综述[J]. 兵工学报, 2015, 36 (增刊2): 326- 340.
|
| 23 |
关志成, 张仁豫, 薛家麒, 等. 自然污秽可溶盐构成及其对污闪电压值的影响[J]. 电瓷避雷器, 1989, (6): 13- 18.
|
| 24 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 污秽条件下使用的高压绝缘子的选择和尺寸确定 第1部分: 定义、信息和一般原则: GB/T 26218.1—2010[S]. 北京: 中国标准出版社, 2011.
|
| 25 |
国家能源局. 高压交流系统用复合绝缘子人工污秽试验: DL/T 859—2015[S]. 北京: 中国电力出版社, 2015.
|
| 26 |
程乐峰, 余涛, 张孝顺, 等. 机器学习在能源与电力系统领域的应用和展望[J]. 电力系统自动化, 2019, 43 (1): 15- 31.
|
|
CHENG Lefeng, YU Tao, ZHANG Xiaoshun, et al. Machine learning for energy and electric power systems: state of the art and prospects[J]. Automation of Electric Power Systems, 2019, 43 (1): 15- 31.
|
| 27 |
肖建, 于龙, 白裔峰. 支持向量回归中核函数和超参数选择方法综述[J]. 西南交通大学学报, 2008, 43 (3): 297- 303.
|
|
XIAO Jian, YU Long, BAI Yifeng. Survey of the selection of kernels and hyper-parameters in support vector regression[J]. Journal of Southwest Jiaotong University, 2008, 43 (3): 297- 303.
|