Electric Power ›› 2024, Vol. 57 ›› Issue (3): 144-151.DOI: 10.11930/j.issn.1004-9649.202305029
• New Energy • Previous Articles Next Articles
					
													Wenhua ZHAN1(
), Jianfeng CHE2(
), Bo WANG2, Yu DING2
												  
						
						
						
					
				
Received:2023-05-08
															
							
															
							
																	Accepted:2023-08-06
															
							
																	Online:2024-03-23
															
							
							
																	Published:2024-03-28
															
							
						Supported by:Wenhua ZHAN, Jianfeng CHE, Bo WANG, Yu DING. A Grid-based Numerical Weather Prediction Method for Multi-output Prediction of Regional Photovoltaic Power[J]. Electric Power, 2024, 57(3): 144-151.
| 算法 | Emae /% | Ermse /% | r | |||
| BPNN | 5.87 | 8.25 | 0.958 | |||
| XGBoost | 6.60 | 8.97 | 0.952 | |||
| 本文方法 | 5.74 | 8.00 | 0.960 | 
Table 1 Performance of different methods for total power prediction of 46 PV stations
| 算法 | Emae /% | Ermse /% | r | |||
| BPNN | 5.87 | 8.25 | 0.958 | |||
| XGBoost | 6.60 | 8.97 | 0.952 | |||
| 本文方法 | 5.74 | 8.00 | 0.960 | 
| 1 | 国家能源局. 国家能源局2023年一季度新闻发布会文字实录[EB/OL]. (2023-02-13)[2023-04-17]. https://www.nea.gov.cn/2023-02/13/C.1310697149.htm. | 
| 2 | 薛飞, 李旭涛, 李宏强, 等. 基于双侧电压反馈控制策略的并网光伏系统电压稳定性研究[J]. 中国电力, 2022, 55 (9): 183- 191, 203. | 
| XUE Fei, LI Xutao, LI Hongqiang, et al. Research on voltage stability of grid-connected photovoltaic system based on double-side voltage feedback control[J]. Electric Power, 2022, 55 (9): 183- 191, 203. | |
| 3 | 张娜, 任强, 刘广忱, 等. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55 (5): 57- 65. | 
| ZHANG Na, REN Qiang, LIU Guangchen, et al. PV power short-term forecasting method based on VMD-GWO-ELMAN[J]. Electric Power, 2022, 55 (5): 57- 65. | |
| 4 | 李一, 杨茂, 苏欣. 基于集成聚类及改进马尔科夫链模型的光伏功率短期预测[J]. 南方电网技术, 2023, 17 (10): 113- 122. | 
| LI Yi, YANG Mao, SU Xin. Short-term prediction of photovoltaic power based on integrated clustering and improved markov chain model[J]. Southern Power System Technology, 2023, 17 (10): 113- 122. | |
| 5 | 冯双磊. 新能源发电功率预测技术[R]. 北京: 中国电机工程学会, 2018. | 
| 6 | 卢静, 翟海清, 冯双磊, 等. 光伏发电功率预测方法的探索[J]. 华东电力, 2013, 41 (2): 380- 384. | 
| LU Jing, ZHAI Haiqing, FENG Shuanglei, et al. Physical method for photovoltaic power prediction[J]. East China Electric Power, 2013, 41 (2): 380- 384. | |
| 7 |  
											叶林, 陈政, 赵永宁, 等. 基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化, 2015, 39 (16): 16- 22. 
																							 DOI  | 
										
|  
											YE Lin, CHEN Zheng, ZHAO Yongning, et al. Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J]. Automation of Electric Power Systems, 2015, 39 (16): 16- 22. 
																							 DOI  | 
										|
| 8 | 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43 (8): 75- 81. | 
| TAN Haiwang, YANG Qiliang, XING Jianchun, et al. Photovoltaic power prediction based on combined xgboost-lstm model[J]. Acta Energiae Solaris Sinica, 2022, 43 (8): 75- 81. | |
| 9 | 葛浩然, 夏宇, 邹文进, 等. 基于RF-XGBoost的光伏发电功率预测[J]. 电气自动化, 2022, 44 (5): 12- 15. | 
| GE Haoran, XIA Yu, ZOU Wenjin, et al. Prediction of photovoltaic power generation based on RF-XGBoost[J]. Electrical Automation, 2022, 44 (5): 12- 15. | |
| 10 | 吴春华, 董阿龙, 李智华, 等. 基于图相似日和PSO-XGBoost的光伏功率预测[J]. 高电压技术, 2022, 48 (8): 3250- 3259. | 
| WU Chunhua, DONG Along, LI Zhihua, et al. Photovoltaic power prediction based on graph similarity day and PSO-XGBoost[J]. High Voltage Engineering, 2022, 48 (8): 3250- 3259. | |
| 11 |  
											YE R, DAI Q. MultiTL-KELM: a multi-task learning algorithm for multi-step-ahead time series prediction[J]. Applied Soft Computing, 2019, 79, 227- 253. 
																							 DOI  | 
										
| 12 | 吉锌格, 李慧, 叶林, 等. 基于波动特性挖掘的短期光伏功率预测[J]. 太阳能学报, 2022, 43 (5): 146- 155. | 
| JI Xinge, LI Hui, YE Lin, et al. Short-term photovoltaic power forecasting based on fluctuation characteristics mining[J]. Acta Energiae Solaris Sinica, 2022, 43 (5): 146- 155. | |
| 13 | 张青山, 王丽婕, 郝颖, 等. 基于卫星云图和晴空模型的分布式光伏电站太阳辐照度超短期预测[J]. 高电压技术, 2022, 48 (8): 3271- 3281. | 
| ZHANG Qingshan, WANG Lijie, HAO Ying, et al. Ultra-short-term solar irradiance prediction of distributed photovoltaic power stations based on satellite cloud images and clear sky model[J]. High Voltage Engineering, 2022, 48 (8): 3271- 3281. | |
| 14 |  
											王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46 (11): 67- 74. 
																							 DOI  | 
										
|  
											WANG Biao, LYU Yang, CHEN Zhong, et al. Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of Electric Power Systems, 2022, 46 (11): 67- 74. 
																							 DOI  | 
										|
| 15 | 郑若楠, 李国杰, 韩蓓, 等. 基于加权扩展日特征矩阵的分布式光伏发电日前功率预测[J]. 电力自动化设备, 2022, 42 (2): 99- 105. | 
| ZHENG Ruonan, LI Guojie, HAN Bei, et al. Day-ahead power forecasting of distributed photovoltaic generation based on weighted expanded daily feature matrix[J]. Electric Power Automation Equipment, 2022, 42 (2): 99- 105. | |
| 16 | 乔颖, 孙荣富, 丁然, 等. 基于数据增强的分布式光伏电站群短期功率预测(二): 网格化预测[J]. 电网技术, 2021, 45 (6): 2210- 2218. | 
| QIAO Ying, SUN Rongfu, DING Ran, et al. Distributed photovoltaic station cluster short-term power forecasting part II: gridding prediction[J]. Power System Technology, 2021, 45 (6): 2210- 2218. | |
| 17 | 焦田利. 基于时空关系的广域分布式光伏发电群出力预测关键模型研究[D]. 杭州: 杭州电子科技大学, 2019. | 
| JIAO Tianli. Study on key models of wide area distributed photovoltaic power generation output prediction based on spatial-temporal relationship[D]. Hangzhou: Hangzhou Dianzi University, 2019. | |
| 18 |  
											ALMONACID-OLLEROS G, ALMONACID G, GIL D, et al. Evaluation of transfer learning and fine-tuning to nowcast energy generation of photovoltaic systems in different climates[J]. Sustainability, 2022, 14 (5): 3092. 
																							 DOI  | 
										
| 19 |  
											MIRAFTABZADEH S M, LONGO M. High-resolution PV power prediction model based on the deep learning and attention mechanism[J]. Sustainable Energy, Grids and Networks, 2023, 34, 101025. 
																							 DOI  | 
										
| 20 |  
											LUO X, ZHANG D X, ZHU X. Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants[J]. Renewable Energy, 2022, 185, 1062- 1077. 
																							 DOI  | 
										
| 21 | 杜仲耀, 陈晓英, 邓宇, 等. 基于特征迁移的光伏功率短期预测[J]. 电源技术, 2022, 46 (3): 315- 319. | 
| DU Zhongyao, CHEN Xiaoying, DENG Yu, et al. Short term prediction of photovoltaic power based on feature transfer[J]. Chinese Journal of Power Sources, 2022, 46 (3): 315- 319. | |
| 22 | 张童彦, 廖清芬, 唐飞, 等. 基于气象资源插值与迁移学习的广域分布式光伏功率预测方法[J]. 中国电机工程学报, 2023, 43 (20): 7929- 7940. | 
| ZHANG Tongyan, LIAO Qingfen, TANG Fei, et al. Wide-area distributed photovoltaic power forecast method based on meteorological resource interpolation and transfer learning[J]. Proceedings of the CSEE, 2023, 43 (20): 7929- 7940. | |
| 23 | 卢俊杰, 蔡涛, 郎建勋, 等. 基于集群划分的光伏电站集群发电功率短期预测方法[J]. 高电压技术, 2022, 48 (5): 1943- 1951. | 
| LU Junjie, CAI Tao, LANG Jianxun, et al. Short-term power output forecasting of clustered photovoltaic solar plants based on cluster partition[J]. High Voltage Engineering, 2022, 48 (5): 1943- 1951. | |
| 24 | 崔杨, 陈正洪, 许沛华. 基于机器学习的集群式风光一体短期功率预测技术[J]. 中国电力, 2020, 53 (3): 1- 7. | 
| CUI Yang, CHEN Zhenghong, XU Peihua. Short-term power prediction for wind farm and solar plant clusters based on machine learning method[J]. Electric Power, 2020, 53 (3): 1- 7. | |
| 25 | 邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020. | 
| 26 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA. ACM, 2016: 785–794. | 
| [1] | WEI Wei, YU He, YE Li, WANG Yingchun. Low Voltage Substation Photovoltaic Ultra Short Term Power Prediction Method Based on FCM-SENet-TCN [J]. Electric Power, 2025, 58(6): 172-179. | 
| [2] | Hanzhang LI, Jiangtao FENG, Pengcheng WANG, Haojie RONG, Yuhuan CHAI. Photovoltaic Power Prediction Model Based on TDE-SO-AWM-GRU [J]. Electric Power, 2024, 57(12): 41-49. | 
| [3] | GUO Hongwu, CHE Jianfeng, YAN Yixun, WANG Lijie. Short-Term Photovoltaic Power Prediction Based on Standard Clear Sky Set Defined by No Climbing Event [J]. Electric Power, 2023, 56(9): 187-195. | 
| [4] | LU Youwen, CUI Hao, CHEN Jianing, PENG Xiangjia, FENG Shuang, LIU Dong. Intelligent Identification Method of Wind Farm Sub-synchronous/Super-synchronous Oscillation Parameters Based on RA-CNN and Synchrophasor [J]. Electric Power, 2023, 56(4): 46-55,67. | 
| [5] | ZHOU Yanzhen, ZHA Xianyu, LAN Jian, GUO Qinglai, SUN Hongbin, XUE Feng, WANG Shengming. Transient Stability Prediction of Power Systems Based on Deep Residual Network and Data Augmentation [J]. Electric Power, 2020, 53(1): 22-31. | 
| [6] | LIANG Shi-chun, ZHANG Xiao-dong, LIN Pei-feng, NIU Meng. A Power Prediction Model of PV System With Hybrid Energy Storage [J]. Electric Power, 2014, 47(3): 24-27. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
