Electric Power ›› 2023, Vol. 56 ›› Issue (11): 197-205.DOI: 10.11930/j.issn.1004-9649.202210127
• New Energy • Previous Articles Next Articles
Dahu LI1(), Hongyu ZHOU2(
), Yue ZHOU1, Yuze RAO1, Wei YAO2(
)
Received:
2022-10-31
Accepted:
2023-01-29
Online:
2023-11-23
Published:
2023-11-28
Supported by:
Dahu LI, Hongyu ZHOU, Yue ZHOU, Yuze RAO, Wei YAO. Multi-verse Optimization-based MPPT Design for PV-TEG System[J]. Electric Power, 2023, 56(11): 197-205.
PV系统 | ||||||||||||||||
模型 | 模块数量 | 最大功率/W | 开路电压/V | 短路电流/A | 电压最大值/V | 电流最大值/A | ||||||||||
A10 Green Technology A10 J-M60-225 | 60 | 224.9856 | 36.24 | 8.04 | 30.24 | 7.44 | ||||||||||
TEG系统 | 升压转换器 | |||||||||||||||
塞贝克系数 | 温度 T0/K | 转换式 | 开关频率 fs/kHz | 负载 R/Ω | 电感 L/mH | 电容/μF | ||||||||||
α0/(μV·K–1) | 变化率 α1/(μV·(sK)–1) | C1 | C2 | |||||||||||||
210 | 120 | 300 | Vout=Vin/(1–DC) | 20 | 3 | 250 | 66 | 200 |
Table 1 Main parameters of PV-TEG system and boost converter
PV系统 | ||||||||||||||||
模型 | 模块数量 | 最大功率/W | 开路电压/V | 短路电流/A | 电压最大值/V | 电流最大值/A | ||||||||||
A10 Green Technology A10 J-M60-225 | 60 | 224.9856 | 36.24 | 8.04 | 30.24 | 7.44 | ||||||||||
TEG系统 | 升压转换器 | |||||||||||||||
塞贝克系数 | 温度 T0/K | 转换式 | 开关频率 fs/kHz | 负载 R/Ω | 电感 L/mH | 电容/μF | ||||||||||
α0/(μV·K–1) | 变化率 α1/(μV·(sK)–1) | C1 | C2 | |||||||||||||
210 | 120 | 300 | Vout=Vin/(1–DC) | 20 | 3 | 250 | 66 | 200 |
算法 | 上界 | 下界 | 种群 数量 | 初始值 | 最大 迭代 次数 | 参数1 | 参数2 | 参数3 | ||||||||
MVO | 1 | 0 | 5 | 0.5 | 5 | WEPmax=1 | WEPmin=0.2 | 膨胀率 c=0.6 | ||||||||
MFO | 1 | 0 | 5 | 0.5 | 5 | 选择参数 t=0.6 | 路径数量 k=–1 | 火焰螺旋 参数 f=0.5 | ||||||||
GWO | 1 | 0 | 5 | 0.5 | 5 | α=1 | β=1.5 | δ=1.5 | ||||||||
FA | 1 | 0 | 5 | 0.5 | 5 | 步长因子 α=0.25 | 吸引度 β=0.2 | 光强度吸收 系数 γ=1 | ||||||||
PSO | 1 | 0 | 5 | 0.5 | 5 | 加速常数 c1, c2=2 | 惯性因子 w=0.6 | 速度最大值 Vmax=0.8 |
Table 2 Parameter settings of five algorithms
算法 | 上界 | 下界 | 种群 数量 | 初始值 | 最大 迭代 次数 | 参数1 | 参数2 | 参数3 | ||||||||
MVO | 1 | 0 | 5 | 0.5 | 5 | WEPmax=1 | WEPmin=0.2 | 膨胀率 c=0.6 | ||||||||
MFO | 1 | 0 | 5 | 0.5 | 5 | 选择参数 t=0.6 | 路径数量 k=–1 | 火焰螺旋 参数 f=0.5 | ||||||||
GWO | 1 | 0 | 5 | 0.5 | 5 | α=1 | β=1.5 | δ=1.5 | ||||||||
FA | 1 | 0 | 5 | 0.5 | 5 | 步长因子 α=0.25 | 吸引度 β=0.2 | 光强度吸收 系数 γ=1 | ||||||||
PSO | 1 | 0 | 5 | 0.5 | 5 | 加速常数 c1, c2=2 | 惯性因子 w=0.6 | 速度最大值 Vmax=0.8 |
算法 | 温度的阶跃变化 | 启动测试 | ||||||||||||||
功率/ W | 电流/ A | 电压/ V | 能量/ (W·s) | 功率/ W | 电流/ A | 电压/ V | 能量/ (W·s) | |||||||||
MVO | 130.0 | 1.89 | 68.8 | 236.5 | 195.6 | 2.62 | 74.7 | 92.6 | ||||||||
GWO | 114.5 | 1.78 | 64.0 | 225.6 | 195.1 | 2.62 | 74.5 | 90.5 | ||||||||
FA | 92.1 | 1.71 | 53.9 | 186.3 | 194.9 | 2.61 | 74.6 | 89.2 | ||||||||
MFO | 110.8 | 1.81 | 61.2 | 214.7 | 194.7 | 2.61 | 74.6 | 88.7 | ||||||||
PSO | 110.7 | 1.80 | 61.5 | 220.1 | 195.0 | 2.62 | 74.6 | 91.2 |
Table 3 Results obtained under two cases by five algorithms
算法 | 温度的阶跃变化 | 启动测试 | ||||||||||||||
功率/ W | 电流/ A | 电压/ V | 能量/ (W·s) | 功率/ W | 电流/ A | 电压/ V | 能量/ (W·s) | |||||||||
MVO | 130.0 | 1.89 | 68.8 | 236.5 | 195.6 | 2.62 | 74.7 | 92.6 | ||||||||
GWO | 114.5 | 1.78 | 64.0 | 225.6 | 195.1 | 2.62 | 74.5 | 90.5 | ||||||||
FA | 92.1 | 1.71 | 53.9 | 186.3 | 194.9 | 2.61 | 74.6 | 89.2 | ||||||||
MFO | 110.8 | 1.81 | 61.2 | 214.7 | 194.7 | 2.61 | 74.6 | 88.7 | ||||||||
PSO | 110.7 | 1.80 | 61.5 | 220.1 | 195.0 | 2.62 | 74.6 | 91.2 |
1 | 武群丽, 席曼. 基于电力供应链博弈的可再生能源政策效应研究[J]. 中国电力, 2022, 55 (5): 12- 20, 38. |
WU Qunli, XI Man. Research on effects of renewable energy policy based on power supply chain game[J]. Electric Power, 2022, 55 (5): 12- 20, 38. | |
2 | 许洪华, 邵桂萍, 鄂春良, 等. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44 (4): 484- 491. |
XU Honghua, SHAO Guiping, E Chunliang, et al. Research on China's future energy system and the realistic path of energy transformation[J]. Power Generation Technology, 2023, 44 (4): 484- 491. | |
3 |
MAHIDIN E, HUSIN H, ZAKI N. M, et al. Critical review of the integration of renewable energy sources with various technologies[J]. Protection and Control of Modern Power Systems, 2021, 6 (1): 37- 54.
DOI |
4 |
YANG B, WU S, ZHANG H, et al. Wave energy converter array layout optimization: A critical and comprehensive overview[J]. Renewable and Sustainable Energy Reviews, 2022, 167, 112668.
DOI |
5 | 董洁,乔建强. “双碳”目标下先进煤炭清洁利用发电技术研究综述,2022,55(8):202-212.[J]. 中国电力, 2022, 55 (8): 202- 212. |
DONG Jie, QIAO Jianqiang. A review on advanced clean coal power generation technology under "Carbon Peaking and Carbon Neutrality" goal[J]. Electric Power, 2022, 55 (8): 202- 212. | |
6 | 曹钰, 房磊. “双碳”背景下热电机组-储热联合运行消纳弃风策略[J]. 中国电力, 2022, 55 (10): 142- 149, 160. |
CAO Yu, FANG Lei. Combined operation strategy of CHP unit and heat accumulator for eliminate abandoned wind under "Double Carbon" background[J]. Electric Power, 2022, 55 (10): 142- 149, 160. | |
7 |
YANG B, WU S, LI Q, et al. Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition[J]. Renewable Energy, 2023, 204, 197- 217.
DOI |
8 | GUCHHAIT P K, BANERJEE A. Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm[J]. Protection and Control of Modern Power Systems, 2020, 5 (1): 1- 13. |
9 | 王奔, 牛洪海, 徐卫峰, 等. 基于PLC的槽式光热太阳能追踪控制系统的研究与应用[J]. 中国电力, 2020, 53 (11): 185- 194. |
WANG Ben, NIU Honghai, XU Weifeng, et al. Research and application of parabolic sun-tracking system based on PLC[J]. Electric Power, 2020, 53 (11): 185- 194. | |
10 | 薛飞, 马鑫, 田蓓, 等. 基于改进蜻蜓算法的光伏全局最大功率追踪[J]. 中国电力, 2022, 55 (2): 131- 137. |
XUE Fei, MA Xin, TIAN Bei, et al. Photovoltaic global maximum power tracking based on improved dragonfly algorithm[J]. Electric Power, 2022, 55 (2): 131- 137. | |
11 |
LUND J W, TOTH A N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics, 2021, 90, 101915.
DOI |
12 |
李鹏, 信鹏飞, 窦鹏冲, 等. 计及光伏发电最大功率跟踪的光储微电网功率协调控制方法[J]. 电力系统自动化, 2014, 38 (4): 8- 13, 103.
DOI |
LI Peng, XIN Pengfei, DOU Pengchong, et al. Power coordinated control of photovoltaic energy-storage system in microgrid under photovoltaic maximum power point tracking condition[J]. Automation of Electric Power Systems, 2014, 38 (4): 8- 13, 103.
DOI |
|
13 |
HÜBNER S, ECK M, STILLER C, et al. Techno-economic heat transfer optimization of large scale latent heat energy storage systems in solar thermal power plants[J]. Applied Thermal Engineering, 2016, 98, 483- 491.
DOI |
14 |
LU F L, ZHU Y, PAN M Z, et al. Thermodynamic, economic, and environmental analysis of new combined power and space cooling system for waste heat recovery in waste-to-energy plant[J]. Energy Conversion and Management, 2020, 226, 113511.
DOI |
15 | 王立舒, 白龙, 房俊龙, 等. 基于双曲正切函数的光伏/温差自适应MPPT控制策略研究[J]. 农业工程学报, 2021, 37 (16): 184- 191. |
WANG Lishu, BAI Long, FANG Junlong, et al. Self-adaptive photovoltaic/temperature difference MPPT control strategy based on hyperbolic tangent function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (16): 184- 191. | |
16 | CALISE F, CAPPIELLO F L, D'ACCADIA M D, et al. Smart grid energy district based on the integration of electric vehicles and combined heat and power generation[J]. Energy Conversion and Management, 2021, 234 (8): 113932. |
17 | LI K W, GARRISON G, MOORE M, et al. An expandable thermoelectric power generator and the experimental studies on power output[J]. International Journal of Heat and Mass Transfer, 2020, 160, 120205. |
18 | CHEN M, LUND H, ROSENDAHL L A, et al. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems[J]. Applied Energy, 2021, 87 (4): 1231- 1238. |
19 |
TORRECILLA M C, MONTECUCCO A, SIVITER, J, et al. Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux[J]. Applied Energy, 2019, 256, 113930.
DOI |
20 | 韩鹏, 李银红, 何璇, 等. 结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法[J]. 电力系统自动化, 2016, 40 (23): 101- 108. |
HAN Peng, LI Yinhong, HE Xuan, et al. Improved maximum power point tracking method for photovoltaic multi-peak based on quantum-behaved particle swarm optimization algorithm[J]. Automation of Electric Power Systems, 2016, 40 (23): 101- 108. | |
21 | REZK H, ELTAMALY A M. A comprehensive comparison of different MPPT techniques for photovoltaic systems[J]. Solar Energy, 2015, 112 (2): 1- 11. |
22 | 殷明慧, 蒯狄正, 李群, 等. 风机最大功率点跟踪的失效现象[J]. 中国电机工程学报, 2011, 31 (18): 40- 47. |
YIN Minghui, KUAI Dizheng, LI Qun, et al. A phenomenon of maximum power point tracking invalidity of wind turbines[J]. Proceedings of the CSEE, 2011, 31 (18): 40- 47. | |
23 | MUZATHIK A M, LANKA S. Photovoltaic modules operating temperature estimation using a simple correlation[J]. International Journal of Energy Engineering, 2014, 4 (4): 151. |
24 | BALATO M, COSTANZO L, LO SCHIAVO A, et al. Optimization of both perturb & observe and open circuit voltage MPPT techniques for resonant piezoelectric vibration harvesters feeding bridge rectifiers[J]. Sensors and Actuators A Physical, 2018, 278: 85-97. |
25 | REZK H, FATHY A, ABDELAZIZ A Y. A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading condition[J]. Renewable and Sustainable Energy Reviews, 2017, 74, 377- 386. |
26 |
ZAKI DIAB A A, REZK H. Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system[J]. Solar Energy, 2017, 157, 171- 186.
DOI |
27 | MOHAMED M A, ZAKI DIAB A A, REZK H. Partial shading mitigation of PV systems via different meta-heuristic techniques[J]. Renewable Energy, 2019, 130: 1159–1175. |
28 |
FARIS H, MAFARJA M M, HEIDARI A A, et al. An efficient binary salp swarm algorithm with crossover scheme for feature selection problems[J]. Knowledge-Based Systems, 2018, 154, 43- 67.
DOI |
29 |
EL-FERGANY A. Extracting optimal parameters of PEM fuel cells using salp swarm optimizer[J]. Renewable Energy, 2018, 119, 641- 648.
DOI |
30 |
JATELY V, ARORA S. Development of a dual-tracking technique for extracting maximum power from PV systems under rapidly changing environmental conditions[J]. Energy, 2017, 133, 557- 571.
DOI |
31 |
LI X S, WEN H Q, HU Y H, et al. Modified beta algorithm for GMPPT and partial shading detection in photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2018, 33 (3): 2172- 2186.
DOI |
[1] | Yunpeng CHENG, Jianhua LI, Shouguo CAI, Xuebo ZHANG, Yong WANG, Ye LU, Ying ZHU. Improved Maximum Power Point Tracking Control of Power Signal Feedback Method for Permanent Magnet Synchronous Generator Considering Loss [J]. Electric Power, 2023, 56(10): 62-70. |
[2] | XUE Fei, MA Xin, TIAN Bei, WU Hui. Photovoltaic Global Maximum Power Tracking Based on Improved Dragonfly Algorithm [J]. Electric Power, 2022, 55(2): 131-137. |
[3] | ZHAO Bin, TAN Heng, LIANG Gao, DONG Xiaodong, QU Hongwei, WANG Li, ZHOU Lawu. Experimental Research on Photovoltaic Arrays Output Power Enhancement Experiment Under Partial Shading in Frigid Plateau Region [J]. Electric Power, 2021, 54(8): 199-208. |
[4] | QIU Gefei, ZHANG Chungang, ZHONG Zekun, YANG Xiaolong, ZI Yang. MPPT Analysis of Photovoltaic Power Generation System Based on P&O and IC Method [J]. Electric Power, 2017, 50(3): 154-160. |
[5] | LIN Qirong, WANG Qiaoqiao, LIN Qiwei, LIN Lin, Dong Chenhui, LIU Hongxia. Research on MPPT Control of Partially Shaded Photovoltaic Array Based on Differential Evolution Algorithm [J]. Electric Power, 2015, 48(6): 39-44. |
[6] | YUAN Xiao-ling, CHEN Yu. Applications of Adaptive Particle Swarm Optimization Algorithm to MPPT of Shadow Photovoltaic Power Generation [J]. Electric Power, 2013, 46(10): 85-90. |
[7] | LUAN Jun-shan, FENG Tao, CHEN Hua. Study on Maximum Power Point Tracking Control Strategy in PV Systems [J]. Electric Power, 2012, 45(11): 74-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||