Electric Power ›› 2023, Vol. 56 ›› Issue (7): 78-84.DOI: 10.11930/j.issn.1004-9649.202209084
• Power System • Previous Articles Next Articles
LIU Dong1, ZHANG Yue2,3, PI Junbo1, SHAN Lianfei2,3, LIU He1, SONG Pengcheng1, JIANG TAO2,3
Received:
2022-09-22
Revised:
2023-05-26
Accepted:
2022-12-21
Online:
2023-07-23
Published:
2023-07-28
Supported by:
LIU Dong, ZHANG Yue, PI Junbo, SHAN Lianfei, LIU He, SONG Pengcheng, JIANG TAO. Construction and Application of Knowledge Graph for Intelligent Retrieval of Power Grid Dispatching and Control Information[J]. Electric Power, 2023, 56(7): 78-84.
[1] 王彩霞, 时智勇, 梁志峰, 等. 新能源为主体电力系统的需求侧资源利用关键技术及展望[J]. 电力系统自动化, 2021, 45(16): 37–48 WANG Caixia, SHI Zhiyong, LIANG Zhifeng, et al. Key technologies and prospects of demand-side resource utilization for power systems dominated by renewable energy[J]. Automation of Electric Power Systems, 2021, 45(16): 37–48 [2] 盛戈皞, 钱勇, 罗林根, 等. 面向新型电力系统的电力设备运行维护关键技术及其应用展望[J]. 高电压技术, 2021, 47(9): 3072–3084 SHENG Gehao, QIAN Yong, LUO Lingen, et al. Key technologies and application prospects for operation and maintenance of power equipment in new type power system[J]. High Voltage Engineering, 2021, 47(9): 3072–3084 [3] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61–69 SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61–69 [4] 余建明, 王小海, 张越, 等. 面向智能调控领域的知识图谱构建与应用[J]. 电力系统保护与控制, 2020, 48(3): 29–35 YU Jianming, WANG Xiaohai, ZHANG Yue, et al. Construction and application of knowledge graph for intelligent dispatching and control[J]. Power System Protection and Control, 2020, 48(3): 29–35 [5] 郑伟彦, 杨勇, 卢家驹, 等. 面向配电网知识图谱的配电调度文本实体链接方法[J]. 电力系统保护与控制, 2021, 49(4): 111–117 ZHENG Weiyan, YANG Yong, LU Jiaju, et al. Entity linking method of distribution dispatching texts for a distribution network knowledge graph[J]. Power System Protection and Control, 2021, 49(4): 111–117 [6] 李明节, 陶洪铸, 许洪强, 等. 电网调控领域人工智能技术框架与应用展望[J]. 电网技术, 2020, 44(2): 393–400 LI Mingjie, TAO Hongzhu, XU Hongqiang, et al. The technical framework and application prospect of artificial intelligence application in the field of power grid dispatching and control[J]. Power System Technology, 2020, 44(2): 393–400 [7] 佟佳弘, 武志刚, 管霖, 等. 电力调度文本的自然语言理解与解析技术及应用[J]. 电网技术, 2020, 44(11): 4148–4156 TONG Jiahong, WU Zhigang, GUAN Lin, et al. Power dispatching text analysis and application based on natural language understanding[J]. Power System Technology, 2020, 44(11): 4148–4156 [8] 杨锦锋, 于秋滨, 关毅, 等. 电子病历命名实体识别和实体关系抽取研究综述[J]. 自动化学报, 2014, 40(8): 1537–1562 YANG Jinfeng, YU Qiubin, GUAN Yi, et al. An overview of research on electronic medical record oriented named entity recognition and entity relation extraction[J]. Acta Automatica Sinica, 2014, 40(8): 1537–1562 [9] 李慧林, 柴玉梅, 孙穆祯. 面向文本命名实体识别的深层网络模型[J]. 小型微型计算机系统, 2019, 40(1): 50–57 LI Huilin, CHAI Yumei, SUN Muzhen. Deep network model for text named entity recognition[J]. Journal of Chinese Computer Systems, 2019, 40(1): 50–57 [10] 鲁华永, 袁越, 郭泓佐, 等. 基于正则表达式的变电站集中监控信息解析方法[J]. 电力系统自动化, 2017, 41(5): 78–83 LU Huayong, YUAN Yue, GUO Hongzuo, et al. Regular expressions based information analytic method for substation centralized monitoring[J]. Automation of Electric Power Systems, 2017, 41(5): 78–83 [11] 邬蓉蓉, 张炜, 王乐. 基于正则表达式的跳闸输电线路名称匹配方法[J]. 电力信息与通信技术, 2017, 15(6): 30–35 WU Rongrong, ZHANG Wei, WANG Le. Tripping transmission line name matching method based on regular expression[J]. Electric Power Information and Communication Technology, 2017, 15(6): 30–35 [12] 李丹, 张远航, 杨保华, 等. 基于约束并行LSTM分位数回归的短期电力负荷概率预测方法[J]. 电网技术, 2021, 45(4): 1356–1364 LI Dan, ZHANG Yuanhang, YANG Baohua, et al. Short time power load probabilistic forecasting based on constrained parallel-LSTM neural network quantile regression mode[J]. Power System Technology, 2021, 45(4): 1356–1364 [13] 王朱君, 王石, 李雪晴, 等. 基于深度学习的事件因果关系抽取综述[J]. 计算机应用, 2021, 41(5): 1247–1255 WANG Zhujun, WANG Shi, LI Xueqing, et al. Review of event causality extraction based on deep learning[J]. Journal of Computer Applications, 2021, 41(5): 1247–1255 [14] 崔佳豪, 毕利. 基于混合神经网络的光伏电量预测模型的研究[J]. 电力系统保护与控制, 2021, 49(13): 142–149 CUI Jiahao, BI Li. Research on photovoltaic power forecasting model based on hybrid neural network[J]. Power System Protection and Control, 2021, 49(13): 142–149 [15] 陈斌, 周勇, 刘兵. 基于卷积双向长短期记忆网络的事件触发词抽取[J]. 计算机工程, 2019, 45(1): 153–158 CHEN Bin, ZHOU Yong, LIU Bing. Event trigger word extraction based on convolutional bidirectional long short term memory network[J]. Computer Engineering, 2019, 45(1): 153–158 [16] 吴文涛, 李培峰, 朱巧明. 基于混合神经网络的实体和事件联合抽取方法[J]. 中文信息学报, 2019, 33(8): 77–83 WU Wentao, LI Peifeng, ZHU Qiaoming. Joint extraction of entities and events by a hybrid neural network[J]. Journal of Chinese Information Processing, 2019, 33(8): 77–83 [17] 潘璋, 黄德根. 事件要素注意力与编码层融合的触发词抽取研究[J]. 小型微型计算机系统, 2021, 42(4): 673–677 PAN Zhang, HUANG Degen. Research on trigger word extraction based on the fusion of event argument attention and encoder layer[J]. Journal of Chinese Computer Systems, 2021, 42(4): 673–677 [18] 蒋晨, 王渊, 胡俊华, 等. 基于深度学习的电力实体信息识别方法[J]. 电网技术, 2021, 45(6): 2141–2149 JIANG Chen, WANG Yuan, HU Junhua, et al. Power entity information recognition based on deep learning[J]. Power System Technology, 2021, 45(6): 2141–2149 [19] 丁禹, 尚学伟, 米为民. 基于深度学习的电网调控文本知识抽取方法[J]. 电力系统自动化, 2020, 44(24): 161–168 DING Yu, SHANG Xuewei, MI Weimin. Deep learning based knowledge extraction method for text of power grid dispatch and control[J]. Automation of Electric Power Systems, 2020, 44(24): 161–168 [20] 江叶峰, 孙少华, 仇晨光, 等. 电网故障处置预案文本中的命名实体识别研究[J]. 电力工程技术, 2021, 40(5): 177–183 JIANG Yefeng, SUN Shaohua, QIU Chenguang, et al. Named entity recognition in power fault disposal preplan text[J]. Electric Power Engineering Technology, 2021, 40(5): 177–183 [21] 孙黎霞, 白景涛, 周照宇, 等. 基于双向长短期记忆网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2020, 44(13): 64–72 SUN Lixia, BAI Jingtao, ZHOU Zhaoyu, et al. Transient stability assessment of power system based on Bi-directional long-short-term memory network[J]. Automation of Electric Power Systems, 2020, 44(13): 64–72 [22] MA J, GANCHEV K, WEISS D. State-of-the-art Chinese word segmentation with Bi-LSTMs[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018: 4902–4908. [23] 陈伟, 吴友政, 陈文亮, 等. 基于BiLSTM-CRF的关键词自动抽取[J]. 计算机科学, 2018, 45(增刊1): 91–96, 113 CHEN Wei, WU Youzheng, CHEN Wenliang, et al. Automatic keyword extraction based on BiLSTM-CRF[J]. Computer Science, 2018, 45(S1): 91–96, 113 [24] 单连飞, 张越. 电网调度专业语料库构建方法研究及应用[J]. 机械与电子, 2022, 40(4): 73–76, 80 SHAN Lianfei, ZHANG Yue. Research and application for construction method of power grid dispatching professional corpus[J]. Machinery & Electronics, 2022, 40(4): 73–76, 80 [25] 胡怀伟, 富英, 张越, 等. 基于自然语言理解的故障处置预案语义建模研究及应用[J]. 电力信息与通信技术, 2022, 20(5): 68–73 HU Huaiwei, FU Ying, ZHANG Yue, et al. Research and application of semantic modeling of fault handling plan based on natural language understanding[J]. Electric Power Information and Communication Technology, 2022, 20(5): 68–73 |
[1] | Zhiyuan GAO, Weijin ZHUANG, Feng LI, Fang YU, Hong ZHANG, Yan WANG, Min XIA. High Reusability Verification Platform for Artificial Intelligence Applications in Power Grid Dispatching and Control Field [J]. Electric Power, 2025, 58(3): 142-150. |
[2] | Tonghai JIANG, Feng WANG, Ziqi LIU, Shuaijie SHAN. A Joint Scenario Generation Method for Wind-Solar Meteorological Resources Based on Improved Generative Adversarial Network [J]. Electric Power, 2025, 58(3): 183-192. |
[3] | Bo TIAN, Yue ZHANG, Fei MENG, Lianfei SHAN, Haiyang GAO, Kun TIAN, Yongtian QIAO. Adaptive Understanding Framework and Key Technology of Power Grid Fault Disposal Information [J]. Electric Power, 2024, 57(7): 188-195. |
[4] | Jinying ZHANG, Zhefeng WANG, Hua XIE, Changying YAO, Yanli MIN, XINYing WANG. Development and Application of a Knowledge Retrieval and Analysis System for the Power Industry Based on Knowledge Graph and Large Language Model [J]. Electric Power, 2024, 57(12): 198-205. |
[5] | ZHANG Xin, YE Junjie, CUI Yao, HUANG Xin, ZHONG Linlin. Decoupled Sematic Distance Based Multi-class Defect Scene Detecting for Substations [J]. Electric Power, 2023, 56(6): 209-218. |
[6] | Zhenzhen ZHOU, Yunhai SONG, Yuhao HE, Liwei WANG, Heyan HUANG, Jue HE, Zhihang ZHU, Yunfeng YAN. Extensible Classification Method for Power Personnel Behavior Based on Pose Estimation [J]. Electric Power, 2023, 56(11): 77-85. |
[7] | LIU He, PI Junbo, SONG Pengcheng, ZHAO Hanlin, ZHANG Yue, LIU Xianzhuang. An Event Extraction Method for Power Dispatching Text Based on Hybrid Neural Network [J]. Electric Power, 2022, 55(9): 105-110,120. |
[8] | LI Fengjun, WANG Lei, ZHAO Jian, ZHANG Jianbin, ZHANG Shiyao, TIAN Yangyang. Research on Distributed Photovoltaic Short-Term Power Prediction Method Based on Weather Fusion and LSTM-Net [J]. Electric Power, 2022, 55(11): 149-154. |
[9] | MEI Bingxiao, ZHOU Jinhui, SUN Xiang. Analysis of Distribution Network Information Risks Based on Knowledge Graph and Cellular Automata [J]. Electric Power, 2022, 55(10): 23-31. |
[10] | LI Xiaolu, ZUO Xuan, LIU Riliang, LU Yiming, LI Congli, LIN Shunfu. SHACL-Based Validation Method of Knowledge Graph for Power System Model [J]. Electric Power, 2022, 55(1): 119-125,228. |
[11] | ZHAO Yongliang, FU Xin, GUO Yang, BIAN Yingying, WANG Sining. Intelligent Storage and Retrieval of Power Accessories Based on Deep Learning and Image Recognition [J]. Electric Power, 2021, 54(3): 55-60. |
[12] | MA Jingyi, CUI Haoyang, ZHANG Mingda, SUN Yihui, XU Yongpeng. Small Scale Invade-Target Recognition and Location Based on Improved Faster RCNN [J]. Electric Power, 2021, 54(3): 38-44. |
[13] | ZHOU Junhuang, HUANG Tingcheng, XIE Xiaoyu, FAN Wenjun, YI Tingting, ZHANG Yongjun. Review of Application Research of Video Image Intelligent Recognition Technology in Power Transmission and Distribution Systems [J]. Electric Power, 2021, 54(1): 124-134,166. |
[14] | WU Yunliang, ZHANG Jianxin, LI Bao, LI Peng, LI Zhiyong, ZHOU Xin, YANG Yan, LAI Xiaowen. A Fast Power Market Clearing Method Based on Active Constraints Identification by Deep Learning [J]. Electric Power, 2020, 53(9): 90-97,207. |
[15] | ZHAO Huiru, ZHAO Yihang, GUO Sen. Short-Term Load Forecasting Based on Complementary Ensemble Empirical Mode Decomposition and Long Short-Term Memory [J]. Electric Power, 2020, 53(6): 48-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||