Electric Power ›› 2023, Vol. 56 ›› Issue (6): 209-218.DOI: 10.11930/j.issn.1004-9649.202208117
• Information and Communication • Previous Articles
ZHANG Xin1,2, YE Junjie3, CUI Yao1,2, HUANG Xin1,2, ZHONG Linlin3
Received:
2022-08-30
Revised:
2022-11-18
Accepted:
2022-11-28
Online:
2023-06-23
Published:
2023-06-28
Supported by:
ZHANG Xin, YE Junjie, CUI Yao, HUANG Xin, ZHONG Linlin. Decoupled Sematic Distance Based Multi-class Defect Scene Detecting for Substations[J]. Electric Power, 2023, 56(6): 209-218.
[1] 罗琨, 时永肖, 李正新, 等. 智能变电站继电保护装置寿命模型及其辨识方法[J]. 智慧电力, 2021, 49(1): 96–101 LUO Kun, SHI Yongxiao, LI Zhengxin, et al. Life model and identification method of relay protection device in smart substation[J]. Smart Power, 2021, 49(1): 96–101 [2] 李肖博, 于杨, 姚浩, 等. 新一代智能变电站采控装置[J]. 中国电力, 2022, 55(4): 85–92 LI Xiaobo, YU Yang, YAO Hao, et al. Sample-control-device of smart substation[J]. Electric Power, 2022, 55(4): 85–92 [3] 李泽文, 王志刚, 穆利智, 等. 变电站智能安监可穿戴设备设计[J]. 电力科学与技术学报, 2022, 37(4): 217–226 LI Zewen, WANG Zhigang, MU Lizhi, et al. Design of wearable equipment for substation intelligent safety supervision[J]. Journal of Electric Power Science and Technology, 2022, 37(4): 217–226 [4] 李自若, 沈曦, 张亦兵, 等. 基于深度强化学习的智慧变电站网络异常检测方法[J]. 南方电网技术, 2021, 15(6): 98–105 LI Ziruo, SHEN Xi, ZHANG Yibing, et al. Network anomaly detection method for smart substation based on deep reinforcement learning[J]. Southern Power System Technology, 2021, 15(6): 98–105 [5] 高熠, 田联房, 杜启亮. 基于Mask R-CNN的复合绝缘子过热缺陷检测[J]. 中国电力, 2021, 54(1): 135–141 GAO Yi, TIAN Lianfang, DU Qiliang. Overheating defect detection of composite insulator based on mask R-CNN[J]. Electric Power, 2021, 54(1): 135–141 [6] 王帅, 姜敏, 李江林, 等. 全维度智能变电站设备状态监测关键技术研究[J]. 电测与仪表, 2020, 57(7): 82–86 WANG Shuai, JIANG Min, LI Jianglin, et al. Research on key technologies of condition monitoring of full-dimensional intelligent substation equipment[J]. Electrical Measurement & Instrumentation, 2020, 57(7): 82–86 [7] 刘颖, 胡楠, 杨壮观, 等. 基于深度学习的电网监控视频中工作人员检测与识别[J]. 沈阳工业大学学报, 2019, 41(5): 544–548 LIU Ying, HU Nan, YANG Zhuangguan, et al. Detection and identification of staff in power grid monitoring video based on deep learning[J]. Journal of Shenyang University of Technology, 2019, 41(5): 544–548 [8] 王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(增刊1): 302–310 WANG Xuhong, LI Hao, FAN Shaosheng, et al. Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302–310 [9] 王凯, 王健, 刘刚, 等. 基于RetinaNet和类别平衡采样方法的销钉缺陷检测[J]. 电力工程技术, 2019, 38(4): 80–85 WANG Kai, WANG Jian, LIU Gang, et al. Defect detection of pins based on RetinaNet and class balanced sampling methods[J]. Electric Power Engineering Technology, 2019, 38(4): 80–85 [10] 黄锐勇, 戴美胜, 郑跃斌, 等. 电力设备红外图像缺陷检测[J]. 中国电力, 2021, 54(2): 147–155 HUANG Ruiyong, DAI Meisheng, ZHENG Yuebin, et al. Defect detection of power equipment by infrared image[J]. Electric Power, 2021, 54(2): 147–155 [11] 位一鸣, 童力, 罗麟, 等. 基于卷积神经网络的主变压器外观缺陷检测方法[J]. 浙江电力, 2019, 38(4): 61–68 WEI Yiming, TONG Li, LUO Lin, et al. An exterior defects detecting method of main transformer based on convolutional neural networks[J]. Zhejiang Electric Power, 2019, 38(4): 61–68 [12] 张晶焯, 佘楚云, 伍国兴, 等. 基于增强特征金字塔和可变形卷积的绝缘子缺陷检测[J]. 电力工程技术, 2021, 40(4): 155–160 ZHANG Jingzhuo, SHE Chuyun, WU Guoxing, et al. Insulator defect detection based on enhanced feature pyramid and deformable convolution[J]. Electric Power Engineering Technology, 2021, 40(4): 155–160 [13] 罗鹏, 王波, 马恒瑞, 等. 基于组合式目标检测框架的低漏报率缺陷识别方法[J]. 高电压技术, 2021, 47(2): 454–464 LUO Peng, WANG Bo, MA Hengrui, et al. Defect recognition method with low false negative rate based on combined target detection framework[J]. High Voltage Engineering, 2021, 47(2): 454–464 [14] 顾晓东, 唐丹宏, 黄晓华. 基于深度学习的电网巡检图像缺陷检测与识别[J]. 电力系统保护与控制, 2021, 49(5): 91–97 GU Xiaodong, TANG Danhong, HUANG Xiaohua. Deep learning-based defect detection and recognition of a power grid inspection image[J]. Power System Protection and Control, 2021, 49(5): 91–97 [15] 应樱. 基于改进Faster R-CNN的变电站设备缺陷检测算法研究[D]. 杭州: 浙江大学, 2021. YING Ying. Research on defect detection algorithm of substation equipment based on improved Faster R-CNN[D]. Hangzhou: Zhejiang University, 2021. [16] 尹思宇. 深度学习在变电站电力设备缺陷检测中的应用研究[D]. 成都: 电子科技大学, 2020. YIN Siyu. Research on application of deep learning in defect detection of substation power equipment[D]. Chengdu: University of Electronic Science and Technology of China, 2020. [17] 徐海洋. 变电站设备表面缺陷图像识别关键技术研究[D]. 南宁: 广西大学, 2021. XU Haiyang. Research on key technologies of image recognition for surface defects of substation equipment[D]. Nanning: Guangxi University, 2021. [18] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. 2021: arXiv: 2107.08430.https://arxiv.org/abs/2107.08430. [19] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA, USA. IEEE, 2020: 1571–1580. [20] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. 2020: arXiv: 2004.10934.https://arxiv.org/abs/2004.10934. [21] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. 2018: arXiv: 1804.02767.https://arxiv.org/abs/1804.02767. [22] SALEH S, PAUL M, GREG F. “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring[J]. Ecological Informatics, 2020, 57: 101085. [23] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. [24] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—improving object detection with one line of code[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy. IEEE, 2017: 5562–5570. [25] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2020: 6568–6577. |
[1] | Tonghai JIANG, Feng WANG, Ziqi LIU, Shuaijie SHAN. A Joint Scenario Generation Method for Wind-Solar Meteorological Resources Based on Improved Generative Adversarial Network [J]. Electric Power, 2025, 58(3): 183-192. |
[2] | LIU Dong, ZHANG Yue, PI Junbo, SHAN Lianfei, LIU He, SONG Pengcheng, JIANG TAO. Construction and Application of Knowledge Graph for Intelligent Retrieval of Power Grid Dispatching and Control Information [J]. Electric Power, 2023, 56(7): 78-84. |
[3] | Zhenzhen ZHOU, Yunhai SONG, Yuhao HE, Liwei WANG, Heyan HUANG, Jue HE, Zhihang ZHU, Yunfeng YAN. Extensible Classification Method for Power Personnel Behavior Based on Pose Estimation [J]. Electric Power, 2023, 56(11): 77-85. |
[4] | Bing LI, Yunshan BAI, Kuan ZHAO, Congbin GUO, Yongjie ZHAI. Surface Defect Detection Algorithm for Wind Turbine Blades Based on HSCA-YOLOv7 [J]. Electric Power, 2023, 56(10): 43-52. |
[5] | LI Fengjun, WANG Lei, ZHAO Jian, ZHANG Jianbin, ZHANG Shiyao, TIAN Yangyang. Research on Distributed Photovoltaic Short-Term Power Prediction Method Based on Weather Fusion and LSTM-Net [J]. Electric Power, 2022, 55(11): 149-154. |
[6] | ZHAO Yongliang, FU Xin, GUO Yang, BIAN Yingying, WANG Sining. Intelligent Storage and Retrieval of Power Accessories Based on Deep Learning and Image Recognition [J]. Electric Power, 2021, 54(3): 55-60. |
[7] | MA Jingyi, CUI Haoyang, ZHANG Mingda, SUN Yihui, XU Yongpeng. Small Scale Invade-Target Recognition and Location Based on Improved Faster RCNN [J]. Electric Power, 2021, 54(3): 38-44. |
[8] | LIU Yifan, WANG Shuqing, QING Yihui, WANG Chenxi, LAN Tianze, YAO Ruotian. Insulator Defect Detection Based on EfficientDet and Binocular Camera [J]. Electric Power, 2021, 54(2): 156-163,196. |
[9] | HUANG Ruiyong, DAI Meisheng, ZHENG Yuebin, HUANG Qinqin, KANG Liye, GOU Xiantai, ZHOU Weichao. Defect Detection of Power Equipment by Infrared Image [J]. Electric Power, 2021, 54(2): 147-155. |
[10] | CAO Pei, XU Peng, HE Jianming, GAO Kai, TIAN Haoyang, JI Yiping. A Intelligent Method for Insulation Defect Detection of Switchgear Based on Multi-source Sensing [J]. Electric Power, 2021, 54(10): 117-124,133. |
[11] | ZHOU Junhuang, HUANG Tingcheng, XIE Xiaoyu, FAN Wenjun, YI Tingting, ZHANG Yongjun. Review of Application Research of Video Image Intelligent Recognition Technology in Power Transmission and Distribution Systems [J]. Electric Power, 2021, 54(1): 124-134,166. |
[12] | WU Yunliang, ZHANG Jianxin, LI Bao, LI Peng, LI Zhiyong, ZHOU Xin, YANG Yan, LAI Xiaowen. A Fast Power Market Clearing Method Based on Active Constraints Identification by Deep Learning [J]. Electric Power, 2020, 53(9): 90-97,207. |
[13] | ZHAO Huiru, ZHAO Yihang, GUO Sen. Short-Term Load Forecasting Based on Complementary Ensemble Empirical Mode Decomposition and Long Short-Term Memory [J]. Electric Power, 2020, 53(6): 48-55. |
[14] | YANG Xiaonan, SUN Bo, LANG Yansheng. Intelligent Dispatch Decision-Making for UHVDC Blocking Fault Based on Deep Learning [J]. Electric Power, 2020, 53(6): 8-17. |
[15] | ZHOU Yanzhen, ZHA Xianyu, LAN Jian, GUO Qinglai, SUN Hongbin, XUE Feng, WANG Shengming. Transient Stability Prediction of Power Systems Based on Deep Residual Network and Data Augmentation [J]. Electric Power, 2020, 53(1): 22-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||