Electric Power ›› 2022, Vol. 55 ›› Issue (6): 95-102,214.DOI: 10.11930/j.issn.1004-9649.202112041
• Power System • Previous Articles Next Articles
HUANG Shumin1, JIANG Lingao1, LI Zhichuan2, YANG Guangxu2, SONG Fugen2
Received:
2021-12-12
Revised:
2022-03-18
Online:
2022-06-28
Published:
2022-06-18
Supported by:
HUANG Shumin, JIANG Lingao, LI Zhichuan, YANG Guangxu, SONG Fugen. Corona Loss Prediction of UHV AC Transmission Line Based on DBN Neural Network Optimized by PSO[J]. Electric Power, 2022, 55(6): 95-102,214.
[1] 杨建华, 肖达强, 张伟, 等. 基于改进PSO优化的RBF神经网络的特高压线损预测[J]. 广东电力, 2020, 33(9): 85–91 YANG Jianhua, XIAO Daqiang, ZHANG Wei, et al. Prediction of UHV line loss based on RBFNN optimized by improved PSO[J]. Guangdong Electric Power, 2020, 33(9): 85–91 [2] YIN F H, FARZANEH M, JIANG X L. Corona investigation of an energized conductor under various weather conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1): 462–470. [3] 刘健犇, 张波, 徐鹏飞. 雨天交流输电线路电晕放电判据[J]. 智慧电力, 2020, 48(4): 15–20, 35 LIU Jianben, ZHANG Bo, XU Pengfei. Corona discharge criterion for AC transmission lines in the rain[J]. Smart Power, 2020, 48(4): 15–20, 35 [4] 高晨光. 基于电晕笼和试验线段的高压直流输电电晕损耗等效性研究[D]. 北京: 华北电力大学, 2019: 1–2. GAO Chenguang. Research of equivalence of HVDC corona loss of the conductors based on corona cage and test line[D]. Beijing: North China Electric Power University, 2019: 1–2. [5] LIU L P, ZHANG J, WANG Q, et al. Theoretical calculation and evaluation of the line losses on UHV AC demonstration project[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang, China. IEEE, 2015: 1299–1303. [6] 赵光锋, 李欣唐, 聂钢, 等. 基于电晕损耗计算的特高压交流同塔双回输电线路损耗特性[J]. 科学技术与工程, 2018, 18(30): 177–182 ZHAO Guangfeng, LI Xintang, NIE Gang, et al. Loss characteristics of ultra high voltage alternating current dual circuit transmission line based on corona loss calculation[J]. Science Technology and Engineering, 2018, 18(30): 177–182 [7] 刘云鹏, 黄世龙, 陈思佳, 等. 同塔四回750 kV六层横担输电线路电晕损失研究[J]. 高电压技术, 2019, 45(4): 1118–1123 LIU Yunpeng, HUANG Shilong, CHEN Sijia, et al. Corona loss of 750 kV four-circuit lines with six-layer cross-arms on the same tower[J]. High Voltage Engineering, 2019, 45(4): 1118–1123 [8] 王江储. 基于数据知识融合的输电线路线损计算与线损异常分析研究[D]. 广州: 华南理工大学, 2020: 16–21. WANG Jiangchu. Research on line loss calculation and line loss anomaly analysis of transmission line based on data knowledge fusion[D]. Guangzhou: South China University of Technology, 2020: 16–21. [9] 黄瑛. 计及电晕和谐波的500 kV电力网电能损耗计算[D]. 南京: 河海大学, 2005: 20–29. HUANG Ying. A calculation of energy losses with consideration of corona losses and harmonic energy losses in 500 kV grids[D]. Nanjing: Hohai University, 2005: 20–29. [10] 梁宇镔, 张耀宇, 谭家祺, 等. 基于随机矩阵理论的配电网状态分析与故障定位[J]. 电网与清洁能源, 2021, 37(3): 65–70 LIANG Yubin, ZHANG Yaoyu, TAN Jiaqi, et al. State analysis and fault location of distribution networks based on random matrix theory[J]. Power System and Clean Energy, 2021, 37(3): 65–70 [11] YE X J, LAN S, XIAO S J, et al. Single pole-to-ground fault location method for MMC-HVDC system using wavelet decomposition and DBN[J]. IEEE Transactions on Electrical and Electronic Engineering, 2021, 16(2): 238–247. [12] 杨茂, 王凯旋. 基于CEEMD-DBN模型的光伏出力日前区间预测[J]. 高电压技术, 2021, 47(4): 1156–1164 YANG Mao, WANG Kaixuan. Day-ahead interval forecasting of PV power based on CEEMD-DBN model[J]. High Voltage Engineering, 2021, 47(4): 1156–1164 [13] 刘冠杰. 高压直流输电线路电晕放电的研究[J]. 山东工业技术, 2018(21): 181–182 LIU Guanjie. Study on corona discharge of HVDC transmission line[J]. Journal of Shandong Industrial Technology, 2018(21): 181–182 [14] 申南轩, 张远航, 徐鹏, 等. 基于气象数据的雾天气条件下高压直流输电线路合成电场计算分析[J]. 中国电机工程学报, 2020, 40(23): 7805–7816 SHEN Nanxuan, ZHANG Yuanhang, XU Peng, et al. Calculation and analysis of ground-level total electric field of HVDC lines in fog based on meteorological data[J]. Proceedings of the CSEE, 2020, 40(23): 7805–7816 [15] KOLEV V G, SULAKOV S I. The weather impact on the overhead line losses[C]//2017 15 th International Conference on Electrical Machines, Drives and Power Systems (ELMA). Sofia, Bulgaria. IEEE, 2017: 119–123. [16] 陈思佳. 复杂条件下750 kV同塔四回输电线路导线电晕损失评估[D]. 北京: 华北电力大学, 2019: 1–5. CHEN Sijia. Research on evaluation of corona loss in 750 kV four-circuit transmission lines on the same tower considering complex meteorological conditions[D]. Beijing: North China Electric Power University, 2019: 1–5. [17] GHOSH S, AHMED N, BANERJEE S. Impact of weather(fog) on corona loss and its geographical variation within eastern region[C]//2018 20 th National Power Systems Conference (NPSC). Tiruchirappalli, India. IEEE, 2018: 1–6. [18] 邓蓉婕, 方兆本. 基于斯皮尔曼相关分析的理财产品收益率分析[J]. 统计与决策, 2019, 35(16): 164–167 Deng Rongfang, Fang Zhaoben. Analysis of financial product yield based on Spearman correlation analysis[J]. Statistics and Decision, 2019, 35(16): 164–167 [19] 兰文宝, 车畅, 陶成云. 基于斯皮尔曼等级相关的单演谱成分选择及其在SAR目标识别中的应用[J]. 电波科学学报, 2020, 35(3): 414–421 LAN Wenbao, CHE Chang, TAO Chengyun. Selection of monogenic components based on Spearman rank correlation with application to SAR target recognition[J]. Chinese Journal of Radio Science, 2020, 35(3): 414–421 [20] 张新生, 蔡宝泉. 基于改进随机森林模型的海底管道腐蚀预测[J]. 中国安全科学学报, 2021, 31(8): 69–74 ZHANG Xinsheng, CAI Baoquan. Corrosion prediction of submarine pipelines based on improved Random Forest model[J]. China Safety Science Journal, 2021, 31(8): 69–74 [21] 李正明, 梁彩霞, 王满商. 基于PSO-DBN神经网络的光伏短期发电出力预测[J]. 电力系统保护与控制, 2020, 48(8): 149–154 Li Zhengming, Liang Caixia, Wang Manshang. Short-term power generation output prediction based on a PSO-DBN neural network[J]. Power System Protection and Control, 2020, 48(8): 149–154 [22] 叶鑫杰, 兰生, 肖思捷, 等. 基于小波包能量熵和DBN的MMC-HVDC输电线路单极接地故障定位方法[J]. 南方电网技术, 2021, 15(2): 82–91 YE Xinjie, LAN Sheng, XIAO Sijie, et al. Single pole grounding fault location method of MMC-HVDC transmission line based on wavelet packet energy entropy and DBN[J]. Southern Power System Technology, 2021, 15(2): 82–91 [23] 高伟, 杨耿杰, 郭谋发, 等. 基于DTCWT-DBN的配电网内部过电压类型识别[J]. 电力系统保护与控制, 2019, 47(9): 80–89 GAO Wei, YANG Gengjie, GUO Moufa, et al. Internal overvoltage type identification for distribution network based on DTCWT-DBN algorithm[J]. Power System Protection and Control, 2019, 47(9): 80–89 [24] LEE J H, KIM J W, SONG J Y, et al. Distance-based intelligent particle swarm optimization for optimal design of permanent magnet synchronous machine[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1–4. [25] 李海天. 基于PSO-ESN的线损模拟预测方法研究[D]. 北京: 华北电力大学, 2018. LI Haitian. Research on line loss rate forecasting using echo state network and optimizing by PSO algorithm[D]. Beijing: North China Electric Power University, 2018. [26] 沈英, 黎乐谦, 黄峰, 等. 基于粒子群算法的旋转双棱镜指向误差校正方法[J]. 光学学报, 2021, 41(24): 139–148 SHEN Ying, LI Leqian, HUANG Feng, et al. Pointing error correction of risley-prism system based on particle swarm algorithm[J]. Acta Optica Sinica, 2021, 41(24): 139–148 [27] 邢晓溪. 粒子群算法研究进展[J]. 数据通信, 2015(3): 19–21,30 XIN Xiaoxi. Research progress of particle swarm optimization[J]. Data Communication, 2015(3): 19–21,30 |
[1] | Chouwei NI, Yang CHEN, Xuesong ZHANG, Da LIN, Kaijian DU, Jian CHEN. Optimal Configuration Method for Electric-thermo-hydrogen System Considering Safety Risks [J]. Electric Power, 2024, 57(9): 124-135. |
[2] | Shuo WANG, Huijuan HUO, Dan XU, Xin QIE, Cheng XIN, Weiwei LI, Jing DUAN. Calculation and Sharing of Regional Carbon Emission Reduction Considering Construction of Ultra High Voltage AC Projects [J]. Electric Power, 2024, 57(7): 163-172. |
[3] | Junying WU, Xin LU, Hong LIU, Bin ZHANG, Shouliang CHAI, Yunchun LIU, Jianan WANG. Ultra-short-term Multi-region Power Load Forecasting Based on Spearman-GCN-GRU Model [J]. Electric Power, 2024, 57(6): 131-140. |
[4] | Xiangyang XIA, Daiyu JIANG, Xiaoyong ZENG, Fen GONG, Xiaozhong WU, Xia HUA, Yanpeng LUO, Chao SHI. Research on Control Strategy of Power Conversion System Based on Virtual Oscillator Control [J]. Electric Power, 2024, 57(11): 70-77. |
[5] | DONG Fugui, XIA Meijuan, LI Wanying. Prediction of Provincial Energy Consumption Intensity and Estimation of Carbon Emission Reduction Potential Based on PSO-GWO [J]. Electric Power, 2023, 56(9): 226-234. |
[6] | YU Linlin, YAN Ge, YAN Xintong, MAO Yubin, CHEN Shuyu, LI Tiantian, WEN Yunfeng. Optimal Planning of Terminal Locations and Capacity of UHVDC Considering Constraints of Receiving-End Power Grid Support Capability [J]. Electric Power, 2023, 56(8): 175-185. |
[7] | PI Zhiyong, ZHU Yi, LIAO Xuan, LI Zhenxing, FANG Hao, WU Pei. Fault Location Method for Communication Link with Multi-information Fusion Modeling of Smart Substation [J]. Electric Power, 2023, 56(8): 207-215. |
[8] | YU Aiqing, DING Liqing, WANG Yufei, LI Hao. Multi-fault Repair and Optimization Strategy of Distribution Network Based on Fault Adjacency State [J]. Electric Power, 2023, 56(3): 64-76. |
[9] | Zihan CHEN, Wei TENG, Xuefeng XU, Xian DING, Yibing LIU. Medium and Long Term Wind Power Prediction Based on Graph Convolutional Network and Wind Velocity Differential Fitting [J]. Electric Power, 2023, 56(10): 96-105. |
[10] | XU Jie, WANG Shinong. A Particle Swarm Optimization Algorithm for Smart Grid Voltage Collapse Path [J]. Electric Power, 2023, 56(1): 142-149. |
[11] | HAN Ziyan, WANG Shouxiang, ZHAO Qianyu, ZHENG Zhijie. A Capacity Optimization Configuration Method for Photovoltaic and Energy Storage System of 5 G Base Station Considering Time-of-Use Electricity Price [J]. Electric Power, 2022, 55(9): 8-15. |
[12] | YU Guangkai, LIU Ting, ZHU Kai, NIE Lin, LIANG Jiakai. Switching Impulse Test of UHV Live Working Insulating Tool and Experimental Electrode Optimization [J]. Electric Power, 2022, 55(8): 143-150. |
[13] | LI Wenwu, SHI Qiang, LI Dan, HU Qunyong, TANG Yun, MEI Jinchao. Multi-stage Optimization Forecast of Short-term Power Load Based on VMD and PSO-SVR [J]. Electric Power, 2022, 55(8): 171-177. |
[14] | WANG Shenghui, WANG Ximing, DONG Xinghao, ZHOU Jun. Simulation Experiment on Discharge of Plastic Film Overlapping on UHVDC Transmission Lines [J]. Electric Power, 2022, 55(6): 103-110. |
[15] | MA Aiqing, WANG Jie, BI Yongxiang. Influence of 500 kV AC Lines on Safety Protection of Live Working Personnel in Parallel ±800 kV DC Lines [J]. Electric Power, 2022, 55(6): 128-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||