Electric Power ›› 2022, Vol. 55 ›› Issue (4): 54-62.DOI: 10.11930/j.issn.1004-9649.202011100
• Operation Control and Evolution of Distribution Networks Based on Power Electronic Devices • Previous Articles Next Articles
XI Yanna1,3, LI Xiaotong1,3, LI Ziming2, WEI Yingdong2, LI Xiaoqian2, WANG Fangmin1,3, LI Wei1,3, LI Weirui2
Received:
2021-02-23
Revised:
2022-03-02
Online:
2022-04-28
Published:
2022-04-24
Supported by:
XI Yanna, LI Xiaotong, LI Ziming, WEI Yingdong, LI Xiaoqian, WANG Fangmin, LI Wei, LI Weirui. A Design Method of Hybrid MMC Full-bridge Submodule Proportion Applied to DC Traction Power Supply System for Urban Rail Transit[J]. Electric Power, 2022, 55(4): 54-62.
[1] 李群湛. 城市轨道交通交流牵引供电系统及其关键技术[J]. 西南交通大学学报, 2015, 50(2): 199–207 LI Qunzhan. Industrial frequency single-phase AC traction power supply system and its key technologies for urban rail transit[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 199–207 [2] 李良威, 李群湛, 刘炜. 24脉波整流器外特性仿真及其在城市轨道交通中的应用[J]. 城市轨道交通研究, 2007(10): 52–55 LI Liangwei, LI Qunzhan, LIU Wei. Simulation and application of external characteristic curve of 24-pulse rectifier in urban rail transit[J]. Urban Mass Transit, 2007(10): 52–55 [3] 文春雷, 刘建军, 詹宏, 等. 城市轻轨供电系统对公共电网电能质量的影响研究[J]. 电力建设, 2011, 32(8): 5–10 WEN Chunlei, LIU Jianjun, ZHAN Hong, et al. Effects of power supply system of metro light rail on power quality of public electricity grid[J]. Electric Power Construction, 2011, 32(8): 5–10 [4] KONISHI T, HASE S, OKUI A, et al. Development of PWM converter with large capacity for electric railway substation[C]//The fifth international conference on power electronics and drive systems. Singapore: IEEE, 2003: 1264-1267. [5] 陈德胜. 城轨新型能馈式牵引供电集成技术研究及实现[D]. 北京: 北京交通大学, 2014. CHEN Desheng. Research and realization of integration technology for the new energy feedback traction power supply in the urban rail transit[D]. Beijing: Beijing Jiaotong University, 2014. [6] CORNIC D. Efficient recovery of braking energy through a reversible dc substation[C]//Electrical systems for aircraft, railway and ship propulsion. Italy: IEEE, 2010: 1-9. [7] 郑旺. 城市轨道交通牵引供电双向变流器应用研究[D]. 徐州: 中国矿业大学, 2019. ZHENG Wang. Application and research on bidirectional converter of traction power supply for urban rail transit[D]. Xuzhou: China University of Mining and Technology, 2019. [8] LESNICAR A, MARQUARDT R. An innovative modular multilevel converter topology suitable for a wide power range[C]//2003 IEEE bologna power tech conference proceedings. Italy: IEEE, 2003: 6. [9] 陈磊, 何慧雯, 王磊, 等. 基于半桥型MMC的柔性直流电网故障限流方法综述[J]. 电力系统保护与控制, 2021, 49(21): 175–186 CHEN Lei, HE Huiwen, WANG Lei, et al. Review of the fault current limiting approaches for a flexible DC grid based on a half-bridge MMC[J]. Power System Protection and Control, 2021, 49(21): 175–186 [10] 宋强, 刘文华, 李笑倩, 等. 模块化多电平换流器稳态运行特性的解析分析[J]. 电网技术, 2012, 36(11): 198–204 SONG Qiang, LIU Wenhua, LI Xiaoqian, et al. An analytical method for analysis on steady-state operating characteristics of modular multilevel converter[J]. Power System Technology, 2012, 36(11): 198–204 [11] 汤广福, 贺之渊, 庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化, 2013, 37(15): 3–14 TANG Guangfu, HE Zhiyuan, PANG Hui. Research, application and development of VSC-HVDC engineering technology[J]. Automation of Electric Power Systems, 2013, 37(15): 3–14 [12] 樊云龙, 任建文, 叶小晖, 等. 基于MMC的渝鄂直流背靠背联网工程控制策略研究[J]. 中国电力, 2019, 52(4): 96–103 FAN Yunlong, REN Jianwen, YE Xiaohui, et al. Study on control strategy of back to back MMC-HVDC connecting Chongqing and Hubei power grid[J]. Electric Power, 2019, 52(4): 96–103 [13] LU M Z, HU J B, ZENG R, et al. Imbalance mechanism and balanced control of capacitor voltage for a hybrid modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2018, 33(7): 5686–5696. [14] 花雅文, 李庚, 韩国栋, 等. 混合背靠背模块化多电平变换器设计[J]. 智慧电力, 2021, 49(8): 70–76 HUA Yawen, LI Geng, HAN Guodong, et al. Design of hybrid back-to-back modular multilevel converter[J]. Smart Power, 2021, 49(8): 70–76 [15] 赵成勇, 许建中, 李探. 全桥型MMC-MTDC直流故障穿越能力分析[J]. 中国科学:技术科学, 2013, 43(1): 106–114 ZHAO Chengyong, XU Jianzhong, LI Tan. DC faults ride-through capability analysis of Full-Bridge MMC-MTDC System[J]. Scientia Sinica(Technologica), 2013, 43(1): 106–114 [16] HU J B, XIANG M C, LIN L, et al. Improved design and control of FBSM MMC with boosted AC voltage and reduced DC capacitance[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 1919–1930. [17] 李少华, 王秀丽, 李泰, 等. 混合式MMC及其直流故障穿越策略优化[J]. 中国电机工程学报, 2016, 36(7): 1849–1858 LI Shaohua, WANG Xiuli, LI Tai, et al. Optimal design for hybrid MMC and its DC fault ride-through strategy[J]. Proceedings of the CSEE, 2016, 36(7): 1849–1858 [18] 孟新涵, 李可军, 王卓迪, 等. 混合型MMC拓扑及应用于MTDC直流故障穿越能力分析[J]. 电力系统自动化, 2015, 39(24): 72–79 MENG Xinhan, LI Kejun, WANG Zhuodi, et al. A hybrid MMC topology and its DC fault ride-through capability analysis when applied to MTDC system[J]. Automation of Electric Power Systems, 2015, 39(24): 72–79 [19] 李国庆, 张林, 江守其, 等. 风电经双极混合型MMC-HVDC并网的直流故障穿越协调控制策略[J]. 电力系统保护与控制, 2021, 49(10): 27–36 LI Guoqing, ZHANG Lin, JIANG Shouqi, et al. Coordinated control strategies for DC fault ride-through of wind power integration via bipolar hybrid MMC-HVDC overhead lines[J]. Power System Protection and Control, 2021, 49(10): 27–36 [20] 蒋纯冰, 王鑫, 赵成勇. 混合型MMC全桥子模块的配置比例优化设计[J]. 华北电力大学学报(自然科学版), 2020, 47(4): 10–18 JIANG Chunbing, WANG Xin, ZHAO Chengyong. Configuration proportion optimization design of hybrid MMC full-bridge submodule[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(4): 10–18 [21] 冯谟可, 郭裕群, 许建中, 等. 混合型MMC启动策略及全桥子模块数目配置研究[J]. 华北电力大学学报(自然科学版), 2017, 44(6): 28–35 FENG Moke, GUO Yuqun, XU Jianzhong, et al. Start-up control strategies of hybrid MMC and configuration of FBSM[J]. Journal of North China Electric Power University (Natural Science Edition), 2017, 44(6): 28–35 [22] LIN W X, JOVCIC D, NGUEFEU S, et al. Full-bridge MMC converter optimal design to HVDC operational requirements[J]. IEEE Transactions on Power Delivery, 2016, 31(3): 1342–1350. [23] ZENG R, XU L, YAO L Z, et al. Design and operation of a hybrid modular multilevel converter[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1137–1146. [24] 林卫星, 文劲宇, 刘伟增. 架空柔性直流输电系统全桥模块比例设计与无闭锁控制[J]. 南方电网技术, 2018, 12(2): 3–11 LIN Weixing, WEN Jinyu, LIU Weizeng. Full bridge sub-module proportion design and non-blocking control of overhead MMC-HVDC transmission system[J]. Southern Power System Technology, 2018, 12(2): 3–11 [25] 林艺哲, 林磊, 徐晨. 稳态负电平输出下的混合型MMC设计方法[J]. 中国电机工程学报, 2018, 38(14): 4202–4211,4326 LIN Yizhe, LIN Lei, XU Chen. A design method of hybrid modular multilevel converter with negative output in steady state[J]. Proceedings of the CSEE, 2018, 38(14): 4202–4211,4326 [26] 孔明, 汤广福, 贺之渊. 子模块混合型MMC-HVDC直流故障穿越控制策略[J]. 中国电机工程学报, 2014, 34(30): 5343–5351 KONG Ming, TANG Guangfu, HE Zhiyuan. A DC fault ride-through strategy for cell-hybrid modular multilevel converter based HVDC transmission systems[J]. Proceedings of the CSEE, 2014, 34(30): 5343–5351 |
[1] | Shicheng GUO, Yongsheng LIU, Jing WU, Wei HOU, Xin JIANG, Xiangliang ZHANG, Kai CHEN, Xiangjian SHI. A Precise Identification Method for Fault Trains Based on Train Grounding Current [J]. Electric Power, 2024, 57(7): 143-150. |
[2] | Yu CAO, Pengfei HU, Wanqi CAI, Xi WANG, Daozhuo JIANG, Yiqiao LIANG. MMC Based Super Capacitor and Battery Hybrid Energy Storage System and Hybrid Synchronous Control Strategy [J]. Electric Power, 2024, 57(6): 78-89. |
[3] | LIU Daobing, BAO Miaosheng, Li Shichun, Guo Hancong, Guo Yingying, Qi Yue. Passive Sliding Mode Control Strategy for PCHD Model of MMC in Unbalanced Power Grid [J]. Electric Power, 2023, 56(8): 109-116. |
[4] | CHEN Cheng, XUE Hua, HU Zenghui, WANG Yufei. Passivity-Based PI Control Method of MMC with Asymmetric Bridge Arms [J]. Electric Power, 2023, 56(7): 107-116,124. |
[5] | XU Wenzhe, ZHANG Zheren, XU Zheng. A Hybrid HVDC Topology Suitable for Large-Scale Pure Clean Energy Power Base Transmission [J]. Electric Power, 2023, 56(4): 17-27. |
[6] | ZHANG Binqiao, LI Cheng, LI Zhenxing, XIAO Bowen, LIU Chuang, WANG Fei. A Voltage Balancing Control Strategy for Modular Multilevel Converter Based on Allowable Capacitance Voltage of Sub-modules [J]. Electric Power, 2023, 56(1): 126-131. |
[7] | GUO Hanchen, WANG Chen, FAN Ying, WANG Yi, TIAN Yanjun, TAN Kaidong. Deadbeat Control Strategy for Improving the Harmonic Characteristics of Medium Voltage MMC [J]. Electric Power, 2022, 55(8): 165-170. |
[8] | ZHOU Shijia, YANG Guangyuan, PENG Guangqiang, WU Jiyang, XIN Qingming. Fault-Tolerant Control Strategy Based on Multi-Phase Wind Power System [J]. Electric Power, 2022, 55(7): 134-141. |
[9] | LI Qinan, XIA Yongjun, ZHANG Xiaolin, SUN Baokui, SUN Huadong, ZHANG Fan, LI Lanfang, YANG Yuefeng, HAN Qingtao. Key Factors of Medium-High Frequency Oscillation in Chongqing-Hubei HVDC System and Suppression Strategies [J]. Electric Power, 2022, 55(7): 11-21. |
[10] | LI Qinan, XIA Yongjun, ZHANG Xiaolin, SUN Baokui, SUN Huadong, ZHANG Fan, LI Lanfang, YANG Yuefeng, HAN Qingtao. Medium-High Frequency Impedance Modeling of MMC and System Stability Analysis Considering Voltage Measurement Characteristics [J]. Electric Power, 2022, 55(5): 84-93. |
[11] | XU Lei, XIA Xiangyang, JING Huabing, LIU Yixuan, HE Yedan, YI Haigan. Adaptive Back-stepping Stability Control Strategy for MMC Based on Legendre Polynomial [J]. Electric Power, 2022, 55(3): 18-27. |
[12] | YOU Guangzeng, SONG Zhao, GUI Zihang, LI Lingfang, ZHU Xinchun, SHU Dewu. SoC-based Real-Time Simulation of MMC Electromagnetic Transient [J]. Electric Power, 2022, 55(2): 159-165,189. |
[13] | HE Yedan, XIA Xiangyang, YIN Xu, DENG Wenhua, WANG Can, XIONG Fuqiang, ZHOU Hanliang. MMC Coordinated Control Strategy for Maximum Power Output Under Asymmetric Voltage Sag [J]. Electric Power, 2022, 55(12): 160-167. |
[14] | FAN Shiyuan, YANG Heya, XIANG Xin, YANG Huan, LI Wuhua, HE Xiangning. Derivation and Comparison of Modular Multilevel Converter Topologies with DC Fault Ride-through Capability [J]. Electric Power, 2021, 54(10): 38-45. |
[15] | YUAN Bin, MEI Nian, YUE Bo, LI Tan, WEI Zheng. The Online Connection of MMC to DC-grid Based on DC Breaker [J]. Electric Power, 2020, 53(6): 81-86,96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||