[1] HLINCIK T, BURYAN P. Evaluation of limestones for the purposes of desulphurisation during the fluid combustion of brown coal[J]. Fuel, 2013, 104: 208-215. [2] 叶春松, 罗珊, 张弦, 等. 燃煤电厂脱硫废水零排放处理工艺[J]. 热力发电, 2016, 45(9): 105-108 YE Chunsong, LUO Shan, ZHANG Xian, et al. Key problems and developing trend of zero discharge technology of desulfurization waste water[J]. Thermal Power Generation, 2016, 45(9): 105-108 [3] 王可辉, 蒋芬, 徐志清, 等. 燃煤电厂脱硫废水零排放工艺路线研究[J]. 工业用水与废水, 2016, 47(1): 9-12 WANG Kehui, JIANG Fen, XU Zhiqing, et al. Study on process route of desulfurization wastewater zero discharge from coal-fired power plant[J]. Industrial Water & Wastewater, 2016, 47(1): 9-12 [4] CHU P. Technical manual: guidance for assessing wastewater impacts of FGD scrubbers: EPRI Report 1013313 [R]. Palo Alto, CA: Electric Power Research Institute, 2006. [5] MA S, CHAI J, CHEN G, et al. Research on desulfurization wastewater evaporation: present and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2016, 58(5): 1143-1151. [6] 晋银佳, 刘泽宇, 尤良洲, 等. RESALT技术在燃煤电厂脱硫废水浓缩处理中的应用[J]. 中国电力, 2019, 52(7): 154-160 JIN Yinjia, LIU Zeyu, YOU Liangzhou, et al. Application of the RESALT technology in the FGD wastewater concentration processing of coal-fired power plant[J]. Electric Power, 2019, 52(7): 154-160 [7] 韩飞超, 汪旭, 张荣, 等. 石灰石-石膏湿法烟气脱硫废水处理工艺的优化改造[J]. 中国给水排水, 2016, 32(14): 99-102 HAN Feichao, WANG Xu, ZHANG Rong, et al. Optimized reconstruction of limestone-gypsum wet flue gas desulfurization wastewater treatment process[J]. China Water & Wastewater, 2016, 32(14): 99-102 [8] 虞启义, 徐良斌. 石灰石-石膏湿法烟气脱硫废水的处置[J]. 电力环境保护, 2004(3): 47-48, 56 YU Qiyi, XU Liangbin. Treatment of wastewater from limestone-gypsum flue gas desulfurization in power plant[J]. Electric Power Environmental Protection, 2004(3): 47-48, 56 [9] 陈坤洋, 郭婷婷, 贾西部, 等. 脱硫废水烟道蒸发工艺协同脱汞效率研究[J]. 中国电力, 2018, 51(10): 139-144 CHEN Kunyang, GUO Tingting, JIA Xibu, et al. Enhanced mercury removal technology in coal-fired power plants through desulfurization wastewater evaporation[J]. Electric Power, 2018, 51(10): 139-144 [10] 马双忱, 高然, 丁峰, 等. 脱硫废水自然蒸发影响因素及规律探究[J]. 热力发电, 2018, 47(6): 41-49 MA Shuangchen, GAO Ran, DING Feng, et al. Research on factors and principles of affecting natural evaporation of desulfurization wastewater[J]. Thermal Power Generation, 2018, 47(6): 41-49 [11] 刘秋生. 烟气脱硫废水“零排放”技术应用[J]. 热力发电, 2014, 43(12): 114-117 LIU Qiusheng. Application and comparison of “zero discharge” technology for desulfurization waste water[J]. Thermal Power Generation, 2014, 43(12): 114-117 [12] 孙永超. 高回收率低温多效工艺研究 [D]. 天津: 天津大学, 2016. SUN Yongchao. Study on low temperature multiple effect process with high recovery rate [D]. Tianjin: Tianjin University, 2016. [13] 穆国庆. 高盐废水低温多效蒸发工艺模拟与控制研究 [D]. 青岛: 中国石油大学(华东), 2016. MU Guoqing. Design and control of high salt water low-temperature multi-effect distillation [D]. Qingdao: China University of Petroleum (East China), 2016. [14] 叶春松, 操容, 高燎, 等. 烟气脱硝逃逸氨的迁移转化及其对脱硫废水处理的影响[J]. 热力发电, 2018, 47(10): 73-77 YE Chunsong, CAO Rong, GAO Liao, et al. Migration and conversion of ammonia escaped from flue gas denitrator and its effect on treatment of desulfurization wastewater[J]. Thermal Power Generation, 2018, 47(10): 73-77 [15] 中华人民共和国住房和城乡建设部. 工业循环冷却水处理设计规范: GB/T 50050—2017 [S]. 北京: 中国计划出版社, 2017. |