Electric Power ›› 2020, Vol. 53 ›› Issue (2): 142-149.DOI: 10.11930/j.issn.1004-9649.201909080
Previous Articles Next Articles
LI Yikun1, CHE Quan2, ZHAO Huirong1, PENG Daogang1
Received:
2019-09-10
Revised:
2019-12-25
Online:
2020-02-05
Published:
2020-02-05
Supported by:
LI Yikun, CHE Quan, ZHAO Huirong, PENG Daogang. PSO-SVM-Based Rolling Forecast of Coal Consumption Reference Value for the Power Plants Dispatched by Power Grid[J]. Electric Power, 2020, 53(2): 142-149.
[1] 杨倩鹏, 林伟杰, 王月明, 等. 火力发电产业发展与前沿技术路线[J]. 中国电机工程学报, 2017, 37(13):3787-3794 YANG Qianpeng, LIN Weijie, WANG Yueming, et al. Industry development and frontier technology roadmap of thermal power generation[J]. Proceedings of the CSEE, 2017, 37(13):3787-3794 [2] 国务院. 中华人民共和国国民经济和社会发展第十三个五年规划纲要[EB/OL]. (2017-03-17)[2019-08-03]. http://www.gov.cn/xinwen/2016-03/17/content_5054992.htm. [3] 王艳松, 宋阳阳, 吴昊, 等. 基于禁忌搜索算法的微电网源/荷安全经济调度[J]. 电力系统保护与控制, 2017, 45(20):21-27 WANG Yansong, SONG Yangyang, WU Hao, et al. Security and economic dispatch of source/load for micro-grid based on Tabu search algorithm[J]. Power System Protection and Control, 2017, 45(20):21-27 [4] 国家发改委, 国家能源局. 《关于建立健全煤炭最低库存和最高库存制度的指导意见(试行)》[EB/OL]. (2017-12-07)[2019-08-14]. http://www.gov.cn/xinwen/2017-12/07/content_5245117.htm. [5] 古应华. 区域火电机组热电负荷优化分配研究[D]. 北京:华北电力大学, 2016. GU Yinghua. Study on thermal power load optimization distribution of regional coal-fired power units[D]. Beijing:North China Electric Power University, 2016. [6] 缑新科, 崔乐乐, 巨圆圆, 等. 火电厂机组煤耗特性曲线拟合算法研究[J]. 电力系统保护与控制, 2014, 42(10):84-89 GOU Xinke, CUI Lele, JU Yuanyuan, et al. Study on curve fitting algorithm for thermal power plant units coal consumption[J]. Power System Protection and Control, 2014, 42(10):84-89 [7] DING S, CHANG X H. Application of improved BP neural networks based on LM algorithm in characteristic curve fitting of fiber-optic micro-bend sensor[J]. Advanced Materials Research, 2014, 889/890:825-828. [8] 陈艳平, 毛弋, 陈萍, 等. 基于EEMD-样本熵和Elman神经网络的短期电力负荷预测[J]. 电力系统及其自动化学报, 2016, 28(3):59-64 CHEN Yanping, MAO Yi, CHEN Ping, et al. Short-term power load forecasting based on ensemble empirical mode decomposition-sample entropy and Elman neural network[J]. Proceedings of the CSU-EPSA, 2016, 28(3):59-64 [9] 何耀耀, 秦杨, 杨善林. 基于LASSO分位数回归的中期电力负荷概率密度预测方法[J]. 系统工程理论与实践, 2019, 39(7):1845-1854 HE Yaoyao, QIN Yang, YANG Shanlin. Medium-term power load probability density forecasting method based on LASSO quantile regression[J]. Systems Engineering-Theory & Practice, 2019, 39(7):1845-1854 [10] WANG R, WANG J Y, XU Y Z. A novel combined model based on hybrid optimization algorithm for electrical load forecasting[J]. Applied Soft Computing, 2019, 82(9):1-21. [11] HAFEN R P, SAMAAN N, MAKAROV Y V, et al. Joint seasonal ARMA approach for modeling of load forecast errors in planning studies[C]//2014 IEEE PES T&D Conference and Exposition, April 14-17, 2014. Chicago, IL, USA. IEEE, 2014. [12] 武金莉. 基于PSO优化LSSVM参数的矿井巷道场强预测[D]. 西安:西安科技大学, 2017. WU Jinli. Parameter optimization of LS-SVM base on PSO prediction of field intensity in mine tunnel[D]. Xi'an:Xi'an University of Science and Technology, 2017. [13] 黄文思, 张洁. 如何开掘好电力大数据富矿[N]. 国家电网报, 2019-05-14(8). [14] 李景, 基于神经网络的火电厂设备状态实时监测系统设计[D]. 北京:华北电力大学, 2018. LI Jing. Design of real time condition monitoring system for thermal power plant based on neural network[D]. Beijing:North China Electric Power University, 2018. [15] 张建寰, 吉莹, 陈立东. 深度学习在电力负荷预测中的应用[J]. 自动化仪表, 2019, 40(8):8-12, 17 ZHANG Jianhuan, JI Ying, CHEN Lidong. Application of deep learning in power load forecasting[J]. Process Automation Instrumentation, 2019, 40(8):8-12, 17 [16] 赵航. 煤质变化对燃煤发电机组运行热经济性影响研究[D]. 北京:华北电力大学(北京), 2017. ZHAO Hang. Study the influence of coal quality on thermal economy of coal-fired generating unit[D]. Beijing:North China Electric Power University, 2017. [17] SMYL S. A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting[J]. International Journal of Forecasting, 2020, 36(1):75-85. [18] MALVONI M, DE GIORGI M G, CONGEDO P M. Data on support vector machines (SVM) model to forecast photovoltaic power[J]. Data in Brief, 2016, 9:13-16. [19] 李强, 史元浩, 曾建潮, 等. 基于PSO-Elman神经网络的燃煤机组受热面清洁状态预测[J]. 中国电力, 2019, 52(5):48-53 LI Qiang, SHI Yuanhao, ZENG Jianchao, et al. Forecast of heating surface cleanliness of coal-fired power plants based on PSO-Elman neural network[J]. Electric Power, 2019, 52(5):48-53 [20] 石琴, 仇多洋, 吴冰, 等. 基于粒子群优化支持向量机算法的行驶工况识别及应用[J]. 中国机械工程, 2018, 29(15):1875-1883 SHI Qin, QIU Duoyang, WU Bing, et al. DCR and applications based on PSO-SVM algorithm[J]. China Mechanical Engineering, 2018, 29(15):1875-1883 [21] 练纯青, 郭俊, 洪喜生. 基于煤耗小指标和NOx排放的电站锅炉混合建模与优化[J]. 能源与节能, 2018, 7:2-5, 50 LIAN Chunqing, GUO Jun, HONG Xisheng. Hybrid modeling and optimization of power station boiler on the basis of small coal consumption index and NOx emission[J]. Energy and Energy Conservation, 2018, 7:2-5, 50 [22] 周诗齐. 火电厂机组能耗特性分析及负荷优化分配[D]. 南京:东南大学, 2018. ZHOU Shiqi. The analysis of energy consumption characteristics and optimal load dispatch in thermal power unit[D]. Nanjing:Southeast University, 2018. [23] 李柯润. 燃煤发电机组调峰方式及补偿机制研究[D]. 北京:华北电力大学(北京), 2019. LI Kerun. Research on peak regulation and Compensation mechanism of coal-fired generating units[D]. Beijing:North China Electric Power University, 2019. |
[1] | Zhiyuan GAO, Weijin ZHUANG, Feng LI, Fang YU, Hong ZHANG, Yan WANG, Min XIA. High Reusability Verification Platform for Artificial Intelligence Applications in Power Grid Dispatching and Control Field [J]. Electric Power, 2025, 58(3): 142-150. |
[2] | Chouwei NI, Yang CHEN, Xuesong ZHANG, Da LIN, Kaijian DU, Jian CHEN. Optimal Configuration Method for Electric-thermo-hydrogen System Considering Safety Risks [J]. Electric Power, 2024, 57(9): 124-135. |
[3] | Dan LI, Shiyao QIN, Shaolin LI, Jing HE. LVRT Measurement Model and Transient Parameter Identification of Wind Turbine Based on Chaotic Particle Swarm [J]. Electric Power, 2024, 57(8): 75-84. |
[4] | Peng ZHENG, Pengcheng HAN, Guodong WANG, Ying LOU. Refined Diagnosis Method for Disconnected High-Resistance Grounding Faults in Medium-Voltage Distribution Lines [J]. Electric Power, 2024, 57(4): 220-228. |
[5] | Xiangyang XIA, Daiyu JIANG, Xiaoyong ZENG, Fen GONG, Xiaozhong WU, Xia HUA, Yanpeng LUO, Chao SHI. Research on Control Strategy of Power Conversion System Based on Virtual Oscillator Control [J]. Electric Power, 2024, 57(11): 70-77. |
[6] | Yunpeng HU, Chenggang DU, Jun QI, Rihong ZHENG, Minfu A, Hao ZHANG, Yongliang LIANG. D-S Evidence Theory Based Comprehensive Identification Model for Cause of Grounding Fault in Distribution Network [J]. Electric Power, 2024, 57(10): 133-142. |
[7] | DONG Fugui, XIA Meijuan, LI Wanying. Prediction of Provincial Energy Consumption Intensity and Estimation of Carbon Emission Reduction Potential Based on PSO-GWO [J]. Electric Power, 2023, 56(9): 226-234. |
[8] | PI Zhiyong, ZHU Yi, LIAO Xuan, LI Zhenxing, FANG Hao, WU Pei. Fault Location Method for Communication Link with Multi-information Fusion Modeling of Smart Substation [J]. Electric Power, 2023, 56(8): 207-215. |
[9] | LIU Dong, ZHANG Yue, PI Junbo, SHAN Lianfei, LIU He, SONG Pengcheng, JIANG TAO. Construction and Application of Knowledge Graph for Intelligent Retrieval of Power Grid Dispatching and Control Information [J]. Electric Power, 2023, 56(7): 78-84. |
[10] | ZHANG Li, LIU Qinglei, ZHANG Hongwei. Home Load Optimization Scheduling Strategy Based on Improved Binary Particle Swarm Optimization Algorithm [J]. Electric Power, 2023, 56(5): 118-128. |
[11] | YU Aiqing, DING Liqing, WANG Yufei, LI Hao. Multi-fault Repair and Optimization Strategy of Distribution Network Based on Fault Adjacency State [J]. Electric Power, 2023, 56(3): 64-76. |
[12] | XU Yilun, ZHANG Binqiao, HUANG Jing, XIE Xiao, WANG Ruoxin, SHEN Danqing, HE Lina, YANG Kaifan. Forecast of Photovoltaic Power Based on IWPA-LSSVM Considering Weather Types and Similar Days [J]. Electric Power, 2023, 56(2): 143-149. |
[13] | Jing WANG, Yi YUAN, Yinchi SHAO, Jinqi ZHANG, Ran DING, Yanjiang GONG. Multi-Objective Cluster Classification and Voltage Control Approach for Active Distribution Network Considering Resource Reserve Degree [J]. Electric Power, 2023, 56(12): 69-79. |
[14] | Wei HAN, Wenyan DUAN, Xingwei DU, Feng YAO, Weidong MA, Lei LIU. Fault Diagnosis Method for Operational Security Control System Based on Digital Twins [J]. Electric Power, 2023, 56(11): 121-127. |
[15] | Zihan CHEN, Wei TENG, Xuefeng XU, Xian DING, Yibing LIU. Medium and Long Term Wind Power Prediction Based on Graph Convolutional Network and Wind Velocity Differential Fitting [J]. Electric Power, 2023, 56(10): 96-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||