中国电力 ›› 2025, Vol. 58 ›› Issue (12): 137-146.DOI: 10.11930/j.issn.1004-9649.202505026
• 新型电网 • 上一篇
收稿日期:2025-05-12
修回日期:2025-09-11
发布日期:2025-12-27
出版日期:2025-12-28
作者简介:基金资助:
JI Xin(
), WU Tongxin(
), WANG Honggang(
), LI Jianfang, CHEN Yiting
Received:2025-05-12
Revised:2025-09-11
Online:2025-12-27
Published:2025-12-28
Supported by:摘要:
随着新型电力系统建设深入推进,电网设备状态监测、故障智能诊断和调度指令解析等领域对非结构化文本处理提出迫切需求。针对电力文本中设备、操作、故障信息等实体类型异构、语义关系复杂等问题,提出一种基于语义增强图卷积神经网络的电力系统实体抽取方法。首先,通过同义词替换、随机插入、交换、删除等数据增强策略,解决人工记录文本的表述差异问题;其次,采用动态掩码机制和全词掩码的改进鲁棒优化双向编码器表征预训练模型(robustly optimized bidirectional encoder representations from transformers pretraining approach,RoBERTa),对电力领域术语进行细粒度语义编码;然后,进一步构建包含设备、操作、系统状态等节点的语义关系图;最后,引入基于大语言模型的关系抽取框架,结合词性过滤矩阵实现语义增强的图卷积特征聚合。实验表明:所提模型在调度日志上的实体抽取综合指标达到88.79%,较现有模型提升2.3~3.1个百分点。所提模型能够精准识别“联络开关”“接地消失”等电力操作与状态实体,为故障条件下调度决策知识库更新和调度决策智能化提供了有力支撑。
纪鑫, 武同心, 王宏刚, 李建芳, 陈屹婷. 基于语义增强图卷积神经网络的电力系统实体抽取方法[J]. 中国电力, 2025, 58(12): 137-146.
JI Xin, WU Tongxin, WANG Honggang, LI Jianfang, CHEN Yiting. Entity Extraction Method of Power System Based on Semantic Enhanced Graph Convolutional Neural Network[J]. Electric Power, 2025, 58(12): 137-146.
| 开始时间 | 操作内容 | 完成时间 | ||
| 2020-01-01 09:00 | 地调李四通知:10 kV xxx线路B相接地,本值即通知xxx供电所张三 | 2020-01-01 19:05 | ||
| 2020-01-01 20:00 | 与张三联系后,本值配自合上A联络开关,配自拉开B断路器后,接地未消失 | 2020-01-01 20:00 | ||
| 2020-01-01 20:30 | 与张三联系后,本值配自合上B断路器、配自拉开C断路器后,接地消失 | 2020-01-01 20:30 |
表 1 调度日志案例
Table 1 Case of dispatching log
| 开始时间 | 操作内容 | 完成时间 | ||
| 2020-01-01 09:00 | 地调李四通知:10 kV xxx线路B相接地,本值即通知xxx供电所张三 | 2020-01-01 19:05 | ||
| 2020-01-01 20:00 | 与张三联系后,本值配自合上A联络开关,配自拉开B断路器后,接地未消失 | 2020-01-01 20:00 | ||
| 2020-01-01 20:30 | 与张三联系后,本值配自合上B断路器、配自拉开C断路器后,接地消失 | 2020-01-01 20:30 |
| 模块 | 参数 | 参数值 | ||
| 预训练模型 | 隐藏层大小 | 768 | ||
| 注意力头数 | 12 | |||
| 层数 | 12 | |||
| 图卷积网络 | GCN层数 | 2 | ||
| 隐藏层大小 | 256 | |||
| 激活函数 | ReLU | |||
| Dropout率 | 0.1 | |||
| 数据增强 | 同义词替换个数 n | 2 | ||
| 随机删除概率 p | 0.10 | |||
| 插入/交换次数 N | 1 | |||
| 训练参数 | 初始学习率 | 1 e-4 | ||
| 批次大小 | 32 | |||
| 训练轮数 | ||||
| 权重衰减 | 0.01 | |||
| 预热步数 | 500 | |||
| 语义增强模块 | 词性过滤阈值 | 0.80 | ||
| 关系抽取隐藏层 | 128 | |||
| 梯度裁剪 | 1.00 |
表 2 模型参数设置
Table 2 Model parameter setting
| 模块 | 参数 | 参数值 | ||
| 预训练模型 | 隐藏层大小 | 768 | ||
| 注意力头数 | 12 | |||
| 层数 | 12 | |||
| 图卷积网络 | GCN层数 | 2 | ||
| 隐藏层大小 | 256 | |||
| 激活函数 | ReLU | |||
| Dropout率 | 0.1 | |||
| 数据增强 | 同义词替换个数 n | 2 | ||
| 随机删除概率 p | 0.10 | |||
| 插入/交换次数 N | 1 | |||
| 训练参数 | 初始学习率 | 1 e-4 | ||
| 批次大小 | 32 | |||
| 训练轮数 | ||||
| 权重衰减 | 0.01 | |||
| 预热步数 | 500 | |||
| 语义增强模块 | 词性过滤阈值 | 0.80 | ||
| 关系抽取隐藏层 | 128 | |||
| 梯度裁剪 | 1.00 |
| 模型 | ||||||
| 所提模型 | 92.28 | 85.55 | 88.79 | |||
| 传统GCN | 91.23 | 82.21 | 86.49 | |||
| BiLSTM-CRF | 90.36 | 82.35 | 86.17 | |||
| IDCNN-CRF | 90.89 | 81.20 | 85.77 |
表 3 实验结果对比
Table 3 Comparison of experimental results 单位:%
| 模型 | ||||||
| 所提模型 | 92.28 | 85.55 | 88.79 | |||
| 传统GCN | 91.23 | 82.21 | 86.49 | |||
| BiLSTM-CRF | 90.36 | 82.35 | 86.17 | |||
| IDCNN-CRF | 90.89 | 81.20 | 85.77 |
| 实体类型 | ||||||
| 联系人 | 100 | 96 | 98 | |||
| 故障信息 | 92 | 61 | 73 | |||
| 设备 | 99 | 75 | 85 | |||
| 操作 | 85 | 88 | 86 |
表 4 实体抽取结果对比
Table 4 Comparison of entity extraction results 单位:%
| 实体类型 | ||||||
| 联系人 | 100 | 96 | 98 | |||
| 故障信息 | 92 | 61 | 73 | |||
| 设备 | 99 | 75 | 85 | |||
| 操作 | 85 | 88 | 86 |
| n | ||||||
| 1 | 92.35 | 83.21 | 87.54 | |||
| 2 | 92.28 | 85.55 | 88.79 | |||
| 3 | 90.28 | 85.68 | 87.92 |
表 5 不同n下的实验结果对比
Table 5 Comparison of experimental results under different n conditions 单位:%
| n | ||||||
| 1 | 92.35 | 83.21 | 87.54 | |||
| 2 | 92.28 | 85.55 | 88.79 | |||
| 3 | 90.28 | 85.68 | 87.92 |
| 模型 | ||||||
| 所提模型 | 92.28 | 85.55 | 88.79 | |||
| 模型1 | 89.25 | 80.37 | 84.58 | |||
| 模型2 | 82.31 | 75.22 | 78.61 | |||
| 模型3 | 72.23 | 70.36 | 71.28 |
表 6 消融实验结果对比
Table 6 Comparison of ablation experiment results 单位:%
| 模型 | ||||||
| 所提模型 | 92.28 | 85.55 | 88.79 | |||
| 模型1 | 89.25 | 80.37 | 84.58 | |||
| 模型2 | 82.31 | 75.22 | 78.61 | |||
| 模型3 | 72.23 | 70.36 | 71.28 |
| 1 |
佟佳弘, 武志刚, 管霖, 等. 电力调度文本的自然语言理解与解析技术及应用[J]. 电网技术, 2020, 44 (11): 4148- 4156.
DOI |
|
TONGJIA Hong, WU Zhigang, GUAN Lin, et al. Power dispatching text analysis and application based on natural language understanding[J]. Power System Technology, 2020, 44 (11): 4148- 4156.
DOI |
|
| 2 |
贺馨仪, 董明, 孙歆, 等. 标准数字化应用框架设计及其设备侧领域实践[J]. 中国电力, 2024, 57 (11): 78- 87.
DOI |
|
HE Xinyi, DONG Ming, SUN Xin, et al. The design of standard digital application framework and its field practice on device side[J]. Electric Power, 2024, 57 (11): 78- 87.
DOI |
|
| 3 |
叶远波, 王吉文, 汪伟, 等. 基于哈希和编辑距离算法的SCD双层向量化与变更校验技术[J]. 中国电力, 2024, 57 (1): 255- 262.
DOI |
|
YE Yuanbo, WANG Jiwen, WANG Wei, et al. SCD two-layer vectorization and change verification technology based on hash and edit distance algorithm[J]. Electric Power, 2024, 57 (1): 255- 262.
DOI |
|
| 4 |
荆江平, 智明, 杨飞, 等. 基于数据分析的新型电力系统电力智能交互平台的短文本相似性研究与应用[J]. 电测与仪表, 2025, 62 (10): 133- 138.
DOI |
|
JING Jiangping, ZHI Ming, YANG Fei, et al. Research and application of short text similarity for power intelligent interaction platform in novel power system based on data analysis[J]. Electrical Measurement & Instrumentation, 2025, 62 (10): 133- 138.
DOI |
|
| 5 | 皮俊波, 齐世雄, 孙文多, 等. 基于UIE框架的电网故障处置预案实体和事件识别方法[J]. 中国电力, 2023, 56 (12): 138- 146. |
| PI Junbo, QI Shixiong, SUN Wenduo, et al. Entity and event recognition method for power grid fault handling plan based on UIE framework[J]. Electric Power, 2023, 56 (12): 138- 146. | |
| 6 |
陈鹏, 邰彬, 石英, 等. 融合BERT、双向长短记忆网络和条件随机场的电力设备缺陷文本实体抽取[J]. 电网技术, 2023, 47 (10): 4367- 4376.
DOI |
|
CHEN Peng, TAI Bin, SHI Ying, et al. Text entity extraction of power equipment defects based on BERT-BI-LSTM-CRF algorithm[J]. Power System Technology, 2023, 47 (10): 4367- 4376.
DOI |
|
| 7 |
田雪涵, 董坤, 赵剑锋, 等. 基于增强优化预训练语言模型的电力数据实体识别方法[J]. 智慧电力, 2024, 52 (6): 100- 107.
DOI |
|
TIAN Xuehan, DONG Kun, ZHAO Jianfeng, et al. Entity recognition method for power data based on enhanced optimization pre-trained language model[J]. Smart Power, 2024, 52 (6): 100- 107.
DOI |
|
| 8 |
郑安刚, 张天宜, 杨玉博, 等. 基于智慧计量实验室的多源异构检测数据智能提取技术研究[J]. 电测与仪表, 2024, 61 (8): 70- 77.
DOI |
|
ZHENG Angang, ZHANG Tianyi, YANG Yubo, et al. Research on intelligent extraction technology of multi-source heterogeneous detection data based on intelligent metrology laboratory[J]. Electrical Measurement & Instrumentation, 2024, 61 (8): 70- 77.
DOI |
|
| 9 |
王家凯, 黄佩卓, 李勇乐, 等. 电力非结构化大文本特征提取研究[J]. 浙江电力, 2024, 43 (6): 117- 124.
DOI |
|
WANG Jiakai, HUANG Peizhuo, LI Yongle, et al. Research on feature extraction of unstructured large power texts[J]. Zhejiang Electric Power, 2024, 43 (6): 117- 124.
DOI |
|
| 10 |
廖美英, 周俊煌, 张勇军. 基于种子生长策略与深度神经网络的电力工作票智能识别方法[J]. 浙江电力, 2025, 44 (6): 91- 99.
DOI |
|
LIAO Meiying, ZHOU Junhuang, ZHANG Yongjun. An intelligent recognition method for electrical work permits based on seed growth strategy and deep neural networks[J]. Zhejiang Electric Power, 2025, 44 (6): 91- 99.
DOI |
|
| 11 | SHEN Y, HUANG X. Attention-based convolutional neural network for semantic relation extraction[C]//26th International Conference on Computational Linguistics (COLING 2016). 2016: 2526–2536. |
| 12 | XU Y, MOU L L, LI G, et al. Classifying relations via long short term memory networks along shortest dependency paths[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal. Stroudsburg, PA, USA: ACL, 2015: 1785–1794. |
| 13 |
丁俐夫, 陈颖, 肖谭南, 等. 基于大语言模型的新型电力系统生成式智能应用模式初探[J]. 电力系统自动化, 2024, 48 (19): 1- 13.
DOI |
|
DING Lifu, CHEN Ying, XIAO Tannan, et al. Exploration of generative intelligent application mode for new power systems based on large language models[J]. Automation of Electric Power Systems, 2024, 48 (19): 1- 13.
DOI |
|
| 14 |
陈庆, 柳雨生, 段练达, 等. 大语言模型融合知识图谱的风电运维问答系统研究[J]. 综合智慧能源, 2024, 46 (9): 61- 68.
DOI |
|
CHEN Qing, LIU Yusheng, DUAN Lianda, et al. Research on a wind power operation and maintenance Q & A system based on large language models and knowledge graphs[J]. Integrated Intelligent Energy, 2024, 46 (9): 61- 68.
DOI |
|
| 15 |
张金营, 王哲峰, 谢华, 等. 基于知识图谱与大语言模型的电力行业知识检索分析系统研发与应用[J]. 中国电力, 2024, 57 (12): 198- 205.
DOI |
|
ZHANG Jinying, WANG Zhefeng, XIE Hua, et al. Development and application of a knowledge retrieval and analysis system for the power industry based on knowledge graph and large language model[J]. Electric Power, 2024, 57 (12): 198- 205.
DOI |
|
| 16 | WADHWA S, AMIR S, WALLACE B. Revisiting relation extraction in the era of large language models[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Toronto, Canada. Stroudsburg, PA, USA: ACL, 2023: 15566–15589. |
| 17 | CHUNG H W, HOU L, LONGPRE S, et al. Scaling instruction-finetuned language models[EB/OL]. 2022: arXiv: 2210.11416. https://arxiv.org/abs/2210.11416. |
| 18 | HU Z L, LI Z X, JIN X L, et al. Large language model-based event relation extraction with rationales[C]//International Conference on Computational Linguistics. , 2025. |
| 19 | ZHENG Y W, ZHANG R C, ZHANG J H, et al. LlamaFactory: unified efficient fine-tuning of 100+ language models[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations). Bangkok, Thailand. Stroudsburg, PA, USA: ACL, 2024: 400–410. |
| 20 |
马超, 李武峰, 陈羽飞, 等. ChatGPT类大语言模型赋能电力标准数字化转型的核心技术、技术特征及应用展望[J]. 高电压技术, 2025, 51 (4): 1727- 1746.
DOI |
|
MA Chao, LI Wufeng, CHEN Yufei, et al. Core technologies, technical characteristics, and application prospects of ChatGPT class big language models on the digital transformation of standards in electric power field[J]. High Voltage Engineering, 2025, 51 (4): 1727- 1746.
DOI |
|
| 21 |
蒙飞, 李江鹏, 李涛, 等. 基于语义增强的电网故障处置预案匹配方法[J]. 中国电力, 2025, 58 (4): 237- 244.
DOI |
|
MENG Fei, LI Jiangpeng, LI Tao, et al. Matching method for power grid fault handling plan based on semantic enhancement[J]. Electric Power, 2025, 58 (4): 237- 244.
DOI |
|
| 22 | WEI J, ZOU K. EDA: Easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China. Stroudsburg, PA, USA: ACL, 2019: 6381–6387. |
| 23 | Chinese-Synonyms: A large high-quality corpus of Chinese synonyms[EB/OL]. (2020-05-16)[2025-05-23]. https://github.com/jaaack-wang/Chinese-Synonyms. |
| 24 | LIU Y H, OTT M, GOYAL N, et al. RoBERTa: A robustly optimized BERT pretraining approach[EB/OL]. (2019-07-26)[2025-05-23]. arXiv: 1907.11692. https://arxiv.org/abs/1907.11692. |
| 25 |
黄海新, 蔡明启, 王钰瑶. 基于图卷积神经网络的点云语义分割综述[J]. 计算机科学, 2024, 51 (S1): 43- 49.
DOI |
| 26 |
张波, 杨轶涵, 胡锡燎, 等. 基于隔离森林-MLP的输变电工程量智能评估方法[J]. 浙江电力, 2023, 42 (8): 60- 67.
DOI |
|
ZHANG Bo, YANG Yihan, HU Xiliao, et al. Intelligent evaluation method for power transmission and transformation quantities based on isolation forest and multi-layer perceptron[J]. Zhejiang Electric Power, 2023, 42 (8): 60- 67.
DOI |
|
| 27 |
骆宏飞, 周传明, 火鸿宾, 等. 基于CIFE-MLP模型的脱硝入口氮氧化物浓度预测研究[J]. 电力科技与环保, 2023, 39 (1): 43- 48.
DOI |
|
LUO Hongfei, ZHOU Chuanming, HUO Hongbin, et al. Prediction of NOx concentration at the entrance of denitration system based on CIFE-MLP[J]. Electric Power Technology and Environmental Protection, 2023, 39 (1): 43- 48.
DOI |
|
| 28 |
李卓, 王胤喆, 叶林, 等. 从感知-预测-优化综述图神经网络在电力系统中的应用[J]. 中国电力, 2024, 57 (12): 2- 16.
DOI |
|
LI Zhuo, WANG Yinzhe, YE Lin, et al. The application of graph neural networks in power systems from perspective of perception-prediction-optimization[J]. Electric Power, 2024, 57 (12): 2- 16.
DOI |
|
| 29 |
吴军英, 路欣, 刘宏, 等. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57 (6): 131- 140.
DOI |
|
WU Junying, LU Xin, LIU Hong, et al. Ultra-short-term multi-region power load forecasting based on spearman-GCN-GRU model[J]. Electric Power, 2024, 57 (6): 131- 140.
DOI |
|
| 30 | MANNING C, SURDEANU M, BAUER J, et al. The stanford CoreNLP natural language processing toolkit[C]//Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Baltimore, Maryland. Stroudsburg, PA, USA: ACL, 2014: 55–60. |
| 31 |
姜河, 周航, 赵琰, 等. 计及新能源消纳与碳捕集电厂的多能源系统优化调度研究[J]. 可再生能源, 2024, 42 (11): 1536- 1545.
DOI |
|
JIANG He, ZHOU Hang, ZHAO Yan, et al. Research on multi-time scale optimal scheduling considering optimal consumption of new energy and carbon capture power plants[J]. Renewable Energy Resources, 2024, 42 (11): 1536- 1545.
DOI |
|
| 32 | 栗然, 王炳乾, 彭湘泽, 等. 基于主从博弈的多虚拟电厂动态定价与优化调度[J]. 可再生能源, 2024, 42 (7): 986- 994. |
| LI Ran, WANG Bingqian, PENG Xiangze, et al. Dynamic pricing and optimal scheduling of multi-virtual power plants based on master-slave game[J]. Renewable Energy Resources, 2024, 42 (7): 986- 994. | |
| 33 |
刘刚, 田志浩, 黄颖峰, 等. 考虑虚拟电厂的电力系统一致性经济调度方法[J]. 中国电力, 2025, 58 (6): 105- 111.
DOI |
|
LIU Gang, TIAN Zhihao, HUANG Yingfeng, et al. Consistency economic dispatch method for power systems considering virtual power plants[J]. Electric Power, 2025, 58 (6): 105- 111.
DOI |
|
| 34 |
余雁琳, 杨苹, 曾凯林, 等. 考虑源荷不确定性和N-1安全约束的电力系统优化调度[J]. 可再生能源, 2024, 42 (5): 664- 674.
DOI |
|
YU Yanlin, YANG Ping, ZENG Kailin, et al. Optimal dispatch of power system considering uncertainty of both source and load sides and N-1 security constraint[J]. Renewable Energy Resources, 2024, 42 (5): 664- 674.
DOI |
|
| 35 |
闫志彬, 李立, 阳鹏, 等. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58 (2): 103- 110.
DOI |
|
YAN Zhibin, LI Li, YANG Peng, et al. Optimal scheduling strategy for microgrid considering the support capabilities of grid forming energy storage[J]. Electric Power, 2025, 58 (2): 103- 110.
DOI |
| [1] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
| [2] | 陈子含, 滕伟, 胥学峰, 丁显, 柳亦兵. 基于图卷积网络和风速差分拟合的中长期风功率预测[J]. 中国电力, 2023, 56(10): 96-105. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编