中国电力 ›› 2025, Vol. 58 ›› Issue (12): 137-146.DOI: 10.11930/j.issn.1004-9649.202505026

• 新型电网 • 上一篇    

基于语义增强图卷积神经网络的电力系统实体抽取方法

纪鑫(), 武同心(), 王宏刚(), 李建芳, 陈屹婷   

  1. 国家电网有限公司信息通信中心,北京 100053
  • 收稿日期:2025-05-12 修回日期:2025-09-11 发布日期:2025-12-27 出版日期:2025-12-28
  • 作者简介:
    纪鑫(1984),男,通信作者,硕士,高级工程师,从事电力大数据、云计算等研究,E-mail:xin-ji@sgcc.com.cn
    武同心(1986),男,硕士,高级工程师,从事电力系统知识图谱构建研究,E-mail:tongxin-wu@sgcc.com.cn
    王宏刚(1975),男,硕士,高级工程师,从事电力信息化研究,E-mail:hgwang@sgcc.com.cn
  • 基金资助:
    国家电网有限公司信息通信中心科技项目(52999021N005)。

Entity Extraction Method of Power System Based on Semantic Enhanced Graph Convolutional Neural Network

JI Xin(), WU Tongxin(), WANG Honggang(), LI Jianfang, CHEN Yiting   

  1. State Grid Information & Telecommunication Center, Beijing 100053, China
  • Received:2025-05-12 Revised:2025-09-11 Online:2025-12-27 Published:2025-12-28
  • Supported by:
    This work is supported by State Grid Corporation of China Big Data Center Technology Project (No.52999021N005).

摘要:

随着新型电力系统建设深入推进,电网设备状态监测、故障智能诊断和调度指令解析等领域对非结构化文本处理提出迫切需求。针对电力文本中设备、操作、故障信息等实体类型异构、语义关系复杂等问题,提出一种基于语义增强图卷积神经网络的电力系统实体抽取方法。首先,通过同义词替换、随机插入、交换、删除等数据增强策略,解决人工记录文本的表述差异问题;其次,采用动态掩码机制和全词掩码的改进鲁棒优化双向编码器表征预训练模型(robustly optimized bidirectional encoder representations from transformers pretraining approach,RoBERTa),对电力领域术语进行细粒度语义编码;然后,进一步构建包含设备、操作、系统状态等节点的语义关系图;最后,引入基于大语言模型的关系抽取框架,结合词性过滤矩阵实现语义增强的图卷积特征聚合。实验表明:所提模型在调度日志上的实体抽取综合指标达到88.79%,较现有模型提升2.3~3.1个百分点。所提模型能够精准识别“联络开关”“接地消失”等电力操作与状态实体,为故障条件下调度决策知识库更新和调度决策智能化提供了有力支撑。

关键词: 电力系统实体, 语言增强, 图卷积神经网络, 实体抽取

Abstract:

With the deepening development of new-type power systems, there is an urgent demand for processing unstructured texts in areas such as equipment condition monitoring, intelligent fault diagnosis and dispatch instruction parsing. To address the heterogeneity of entity types such as equipment, operations and faults, along with the complex semantic relations in power texts, a semantic enhanced graph convolutional network method for entity extraction in power systems is proposed. First, data augmentation strategies such as synonym replacement, random insertion, swapping, and deletion are applied to reduce the expression differences in manually recorded texts. Then, a robustly optimized bidirectional encoder representation from transformers pretraining approach (RoBERTa) with a dynamic masking mechanism and whole-word masking is used for fine-grained semantic encoding of domain-specific terms. Next, a semantic relation graph is constructed, including nodes such as equipment, operations, and system states. Finally, a relation extraction framework based on large language models is introduced. This framework incorporates a part-of-speech filtering matrix to enhance graph convolution feature aggregation. Experiments show that the proposed model achieves score of 88.79% on dispatch logs, outperforming existing models by 2.3%~3.1%. The model can accurately identify power operation and status entities such as "closing the tie switch" and "grounding disappears", providing strong support for updating dispatch knowledge bases and enabling intelligent decision-making under fault conditions.

Key words: entity extraction of power system, semantic enhancement, graph convolutional neural network, entity extraction


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?