中国电力 ›› 2025, Vol. 58 ›› Issue (11): 14-24, 37.DOI: 10.11930/j.issn.1004-9649.202503024

• 推进全国统一电力市场建设关键技术与机制 • 上一篇    下一篇

智能小区电动汽车充电动态电价策略设计

潘廷哲1(), 靳丰源2(), 陆泳昊2, 曹望璋1, 阳浩3, 于鹤洋1, 赵勃扬2   

  1. 1. 南方电网科学研究院有限责任公司,广东 广州 510663
    2. 西安交通大学 电气工程系,陕西 西安 710049
    3. 中国南方电网有限责任公司,广东 广州 510663
  • 收稿日期:2025-03-11 修回日期:2025-07-11 发布日期:2025-12-01 出版日期:2025-11-28
  • 作者简介:
    潘廷哲(1994),男,硕士,工程师,从事智能用电与电力需求侧管理技术研究,E-mail:pantingzhe1@163.com
    靳丰源(1999),女,通信作者,博士研究生,从事电力市场、博弈论研究,E-mail:fychin@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52177113);中国南方电网有限责任公司重点科技项目(ZBKJXM20232273)。

Design of Dynamic Pricing Strategy for Electric Vehicles Charging in Smart Communities

PAN Tingzhe1(), JIN Fengyuan2(), LU Yonghao2, CAO Wangzhang1, YANG Hao3, YU Heyang1, ZHAO Boyang2   

  1. 1. Electric Power Research Institute, CSG, Guangzhou 510663, China
    2. Department of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
    3. China Southern Power Grid Co., Ltd., Guangzhou 510663, China
  • Received:2025-03-11 Revised:2025-07-11 Online:2025-12-01 Published:2025-11-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.52177113), the Key Science and Technology Project of CSG (No.ZBKJXM20232273).

摘要:

智能小区利用需求响应对电动汽车和光储系统进行综合管理。然而,传统静态电价因忽视负荷实际响应,易引发新负荷高峰,导致等效负荷波动性增加。为此,提出一种动态电价策略。该动态电价不仅随时间变化,还与小区内部的净负荷水平相关。首先,运营者预测调度周期内的光伏出力与基础负荷,并据此构建动态电价的初始模型。其次,构建主从博弈框架:运营者作为领导者,在上层模型中以最小化等效负荷波动为目标,制定并发布动态电价,且安排储能出力;电动汽车作为跟随者,在下层模型中响应动态电价,并以最小化充电成本为目标,优化其充电策略。进一步,在该下层模型中,动态电价的引入使得电动汽车充电决策相互依赖,形成聚合博弈结构,其最优充电负荷通过纳什均衡确定。最后,通过遗传算法实现对最优动态电价策略的求解。仿真结果表明,所提模型在保障电动汽车经济利益的同时,可有效规避负荷新高峰,平抑等效负荷曲线波动,实现小区运营者的管理目标。

关键词: 需求响应, 电动汽车充电, 动态电价, 主从博弈, 纳什均衡

Abstract:

Smart communities utilize demand response to achieve integrated management of electric vehicles (EVs) and photovoltaic-storage systems. However, traditional static pricing, which disregards actual load responses, tends to induce new load peaks and increases the volatility of the equivalent load. To address these challenges, this paper proposes a dynamic pricing strategy, wherein the price not only varies over time but is also correlated with the internal net load of the community. Firstly, the operator forecasts the photovoltaic generation and the baseline load within the scheduling horizon, and establishes the initial model of dynamic pricing. Secondly, a stackelberg game framework is constructed: the operator, as the leader in the upper-level model, aims to minimize the volatility of the equivalent load by formulating and publishing the dynamic prices as well as scheduling the energy storage output; EVs, as followers in the lower-level model, respond to the dynamic prices and optimize their charging strategies with the objective of minimizing charging costs. Furthermore, in the lower-level model, the introduction of dynamic pricing makes the charging decision of EVs mutually dependent, thereby forming an aggregative game structure, in which the optimal charging load of each EV is determined through the Nash equilibrium. Finally, the optimal dynamic pricing is determined through a genetic algorithm. Simulation results demonstrate that the proposed model effectively reduces load volatility, avoids new load peaks, and achieves the management objectives of the community operator while safeguarding the economic interests of EV users.

Key words: demand response, electric vehicles charging, dynamic prices, stackelberg game, Nash equilibrium


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?