中国电力 ›› 2025, Vol. 58 ›› Issue (4): 245-250.DOI: 10.11930/j.issn.1004-9649.202406082

• 电力气象 • 上一篇    

面向台风灾害下韧性提升的输电通道强化方法

时珊珊1(), 魏新迟1(), 苑子俊2(), 程浩忠2(), 苏运1, 张衡2   

  1. 1. 国网上海市电力公司电力科学研究院,上海 200437
    2. 上海交通大学 电力传输与功率变换控制教育部重点实验室,上海 200240
  • 收稿日期:2024-06-24 录用日期:2024-09-22 发布日期:2025-04-23 出版日期:2025-04-28
  • 作者简介:
    时珊珊(1985),女,博士,高级工程师(教授级),从事韧性电网、车网互动及电力储能技术研究,E-mail:sss3397@163.com
    魏新迟(1989),女,博士,高级工程师,从事韧性电网相关技术研究,E-mail:newlate@126.com
    苑子俊(1998),男,通信作者,博士研究生,从事韧性电网规划相关技术研究,E-mail:yuanzijun_306@sjtu.edu.cn
    程浩忠(1962),男,博士,二级教授,博士生导师,从事电力系统规划、电压稳定、电能质量等研究,E-mail:hzcheng@sjtu.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(5100-202317011A-1-1-ZN)。

Reinforcement Method for Transmission Corridor to Enhance Resilience Against Typhoon Disasters

SHI Shanshan1(), WEI Xinchi1(), YUAN Zijun2(), CHENG Haozhong2(), SU Yun1, ZHANG Heng2   

  1. 1. State Grid Shanghai Electric Power Research Institute, Shanghai 200437, China
    2. Shanghai Jiao Tong University, Key Laboratory of Power Transmission and Power Transformation Control, Ministry of Education, Shanghai 200240, China
  • Received:2024-06-24 Accepted:2024-09-22 Online:2025-04-23 Published:2025-04-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.5100-202317011A-1-1-ZN).

摘要:

关键输电通道辨识及强化是电力系统抵御台风等极端灾害的有效手段。为此,提出了面向抗灾能力提升的两阶段强化方法。首先,基于复杂网络理论和系统状态分析,提出了加权网架熵和潮流转移熵的关键通道辨识指标;然后,结合台风Batts模型计算风场内实时风速,利用蒙特卡洛模拟法对不同风速下通道可用状态采样,构建用于输电通道强化的故障场景;在此基础上,提出两阶段输电通道强化方法,第一阶段以加固、负荷损失等成本之和最小为目标,考虑通道强化、发电机出力调整等措施,第二阶段考虑网架拓扑完整程度,以功率可达性为目标进一步优化输电通道强化策略。研究表明:所提方法能统筹考虑网架拓扑及系统状态变化,实现关键通道准确辨识及系统韧性提升。

关键词: 台风, 韧性提升, 综合重要度

Abstract:

Identification and reinforcement of critical transmission corridors is an effective measure for power systems to defend against extreme disasters, such as typhoon. Therefore, a two-stage reinforcement method for disaster resilience enhancement is proposed. Firstly, key corridor identification indices, including weighted grid entropy and flow transfer entropy, are introduced based on complex network theory and system state analysis. Secondly, the Batts typhoon model is used to compute real-time wind speeds, followed by Monte Carlo sampling of corridor availability under different wind speeds, generating failure scenarios for transmission corridor reinforcement. On this basis, a two-stage transmission corridor reinforcement method is proposed. Stage 1 aims to minimize the sum of costs such as reinforcement and load loss, considering measures like corridor reinforcement and generator output adjustment. Stage 2 takes into account the integrity of the grid topology, further optimizing the transmission corridor reinforcement strategy with the goal of power accessibility. The study shows that the proposed method integrates both the topology and changes in system state, thus achieving the accurate identification of critical corridors and enhancing system resilience.

Key words: typhoon, resilience enhancement, comprehensive importance