中国电力 ›› 2025, Vol. 58 ›› Issue (4): 237-244.DOI: 10.11930/j.issn.1004-9649.202408023

• 电力人工智能 • 上一篇    下一篇

基于语义增强的电网故障处置预案匹配方法

蒙飞1(), 李江鹏1(), 李涛1(), 徐建忠1, 高海洋1, 乔咏田2   

  1. 1. 国网宁夏电力有限公司调度控制中心,宁夏 银川 750001
    2. 国电南瑞南京控制系统有限公司,江苏 南京 211106
  • 收稿日期:2024-08-07 录用日期:2024-11-05 发布日期:2025-04-23 出版日期:2025-04-28
  • 作者简介:
    蒙飞(1987),男,通信作者,高级工程师,从事电网调控运行研究,E-mail:mengfei202408@163.com
    李江鹏(1990),男,高级工程师,从事电力系统运行与控制研究,E-mail:jplmail@163.com
    李涛(1984),男,高级工程师,从事电力系统运行与控制研究,E-mail:76643423@qq.com
  • 基金资助:
    国网宁夏电力有限公司科技项目(5229NX220027)。

Matching Method for Power Grid Fault Handling Plan Based on Semantic Enhancement

MENG Fei1(), LI Jiangpeng1(), LI Tao1(), XU Jianzhong1, GAO Haiyang1, QIAO Yongtian2   

  1. 1. State Grid Ningxia Electric Power Co., Ltd., Power Dispatch and Control Center, Yinchuan 750001, China
    2. Guodian Nari Nanjing Control System Co., Ltd., Nanjing 211106, China
  • Received:2024-08-07 Accepted:2024-11-05 Online:2025-04-23 Published:2025-04-28
  • Supported by:
    This work is supported by Science and Technology Project of State Grid Ningxia Electric Power Co. Ltd. (No.5229NX220027).

摘要:

为提升电网故障处置预案匹配效率和准确率,提出了基于语义增强的电网故障处置预案匹配方法。首先,通过微调基于变换器双向编码器表征(bidirectional encoder representations from transformers,BERT)模型的超参数,将故障处置预案中多调度对象实体表征为可计算词向量,并接入条件随机场(conditional random field,CRF)模型识别调度对象实体类别;然后,基于残差向量-字词嵌入向量-编码向量(residual vector-embedding vector-encoded vector,RE2)计算电网故障信息和调度对象的语义距离,建立基于BERT-CRF-RE2的电网故障处置预案匹配模型;最后,通过某地区电网数据进行验证。结果表明,所提模型有效解决了预案匹配准确率低的问题。

关键词: 电网故障处置, 预案匹配, 语义增强, 多调度对象

Abstract:

In order to improve the matching efficiency and accuracy of grid fault handling plan, a semantic enhancement-based grid fault handling plan matching method is proposed. Firstly, the multi-dispatch objects entities in the fault handling plan are characterized as computable word vectors by fine-tuning the hyperparameters of the bidirectional encoder representations from transformers (BERT) model, and integrated into the conditional random field (CRF) model to identify the dispatch objects entity categories. And then, the semantic distance between the grid fault information and dispatch objects are computed based on the residual vector-embedding vector-encoded vector (RE2), and a grid fault handling plan matching model is established based on BERT-CRF-RE2. Finally, through validation of the data of a regional power grid, the proposed model effectively solves the problem of low plan matching accuracy rate.

Key words: power grid fault handling, plan matching, semantic enhancement, multi-scheduling object