[1] 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127–135 CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127–135 [2] NIKNAM T, KAVOUSI-FARD A, OSTADI A. Impact of hydrogen production and thermal energy recovery of PEMFCPPs on optimal management of renewable microgrids[J]. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1190–1197. [3] 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55(5): 1–11 ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China’s energy and power system[J]. Electric Power, 2022, 55(5): 1–11 [4] 邓浩, 陈洁, 焦东东, 等. 风氢耦合并网系统能量管理控制策略[J]. 高电压技术, 2020, 46(1): 99–106 DENG Hao, CHEN Jie, JIAO Dongdong, et al. Control strategy for energy management of hybrid grid-connected system of wind and hydrogen[J]. High Voltage Engineering, 2020, 46(1): 99–106 [5] 蔡霁霖, 徐青山, 袁晓冬, 等. 基于风电消纳时序场景的电池储能系统配置策略[J]. 高电压技术, 2019, 45(3): 993–1001 CAI Jilin, XU Qingshan, YUAN Xiaodong, et al. Configuration strategy of large-scale battery storage system orienting wind power consumption based on temporal scenarios[J]. High Voltage Engineering, 2019, 45(3): 993–1001 [6] 荆涛, 陈庚, 王子豪, 等. 风光互补发电耦合氢储能系统研究综述[J]. 中国电力, 2022, 55(1): 75–83 JING Tao, CHEN Geng, WANG Zihao, et al. Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric Power, 2022, 55(1): 75–83 [7] 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158–169 XIE Xiaorong, MA Ningjia, LIU Wei, et al. Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158–169 [8] 王振, 苏烨, 张江丰, 等. 基于氢储能的光伏发电系统[J]. 电源技术, 2021, 45(10): 1333–1336 WANG Zhen, SU Ye, ZHANG Jiangfeng, et al. PV generation system based on hydrogen storage[J]. Chinese Journal of Power Sources, 2021, 45(10): 1333–1336 [9] DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: an overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847–3869. [10] 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146–152 YU Hongmei, SHAO Zhigang, HOU Ming, et al. Hydrogen production by water electrolysis: progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146–152 [11] AL-BONSRULAH H A Z, ALSHUKRI M J, MIKHAEEL L M, et al. Design and simulation studies of hybrid power systems based on photovoltaic, wind, electrolyzer, and PEM fuel cells[J]. Energies, 2021, 14(9): 2643. [12] 邓浩, 陈洁, 腾扬新, 等. 风氢耦合系统能量管理策略研究[J]. 太阳能学报, 2021, 42(1): 256–263 DENG Hao, CHEN Jie, TENG Yangxin, et al. Energy management strategy of wind power coupled with hydrogen system[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 256–263 [13] 郭梦婕, 严正, 周云, 等. 含风电制氢装置的综合能源系统优化运行[J]. 中国电力, 2020, 53(1): 115–123, 161 GUO Mengjie, YAN Zheng, ZHOU Yun, et al. Optimized operation design of integrated energy system with wind power hydrogen production[J]. Electric Power, 2020, 53(1): 115–123, 161 [14] 蔡国伟, 边育栋, 孔令国, 等. 风/光制氢系统的同质化建模[J]. 中国电力, 2020, 53(10): 59–65 CAI Guowei, BIAN Yudong, KONG Lingguo, et al. Homogenized modeling and operation domain analysis of wind/photovoltaic-hydrogen generation system[J]. Electric Power, 2020, 53(10): 59–65 [15] 杨海柱, 岳刚伟, 范书豪. 直流微网自适应动态下垂控制策略研究[J]. 电源学报, 2019, 17(2): 101–108 YANG Haizhu, YUE Gangwei, FAN Shuhao. Research on adaptive dynamic droop control strategy for DC microgrid[J]. Journal of Power Supply, 2019, 17(2): 101–108 [16] 柴秀慧, 张纯江, 柴建国, 等. 分布式储能变调节因子SOC下垂控制及功率调节[J]. 太阳能学报, 2021, 42(9): 477–482 CHAI Xiuhui, ZHANG Chunjiang, CHAI Jianguo, et al. Variable adjustment factor SOC droop control and power regulation in distributed energy storage[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 477–482 [17] BI K T, ZHANG S S, ZHU Y X, et al. An improved SOC balancing strategy for HVDC modular energy storage system based on low bandwidth communication with enhanced current regulation accuracy[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 3355–3364. [18] OLIVEIRA T R, GONCALVES SILVA W W A, DONOSO-GARCIA P F. Distributed secondary level control for energy storage management in DC microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 2597–2607. [19] MAIER M, SMITH K, DODWELL J, et al. Mass transport in PEM water electrolysers: a review[J]. International Journal of Hydrogen Energy, 2022, 47(1): 30–56. [20] FALCÃO D S, PINTO A M F R. A review on PEM electrolyzer modelling: guidelines for beginners[J]. Journal of Cleaner Production, 2020, 261: 121184. [21] MA Z W, WITTEMAN L, WRUBEL J A, et al. A comprehensive modeling method for proton exchange membrane electrolyzer development[J]. International Journal of Hydrogen Energy, 2021, 46(34): 17627–17643. [22] 魏立明, 李凯凯. 基于改进扰动观察法的光伏MPPT控制策略[J]. 电源技术, 2022, 46(7): 811–814 WEI Liming, LI Kaikai. Photovoltaic MPPT control strategy based on improved perturbation observation method[J]. Chinese Journal of Power Sources, 2022, 46(7): 811–814 [23] LU X N, SUN K, GUERRERO J M, et al. Double-quadrant state-of-charge-based droop control method for distributed energy storage systems in autonomous DC microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 147–157.
|