[1] 米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39(9): 2537–2544 MI Jianfeng, MA Xiaofang. Development trend analysis of carbon capture, utilization and storage technology in China[J]. Proceedings of the CSEE, 2019, 39(9): 2537–2544 [2] 董洁, 乔建强. “双碳”目标下先进煤炭清洁利用发电技术研究综述[J]. 中国电力, 2022, 55(8): 202–212 DONG Jie, QIAO Jianqiang. A review on advanced clean coal power generation technology under "carbon peaking and carbon neutrality" goal[J]. Electric Power, 2022, 55(8): 202–212 [3] 孙子茹, 艾芊, 居来提·阿不力孜, 等. 考虑季节性氢储及期货式碳交易的综合能源系统年度规划研究[J]. 中国电力, 2022, 55(8): 2–13 SUN Ziru, AI Qian, JULAITI Abulizi, et al. Annual planning study of integrated energy system considering seasonal hydrogen storage and futures carbon trading[J]. Electric Power, 2022, 55(8): 2–13 [4] 陈海鹏, 陈晋冬, 张忠, 等. 计及灵活运行碳捕集电厂捕获能耗的电力系统低碳经济调度[J]. 电力自动化设备, 2021, 41(9): 133–139 CHEN Haipeng, CHEN Jindong, ZHANG Zhong, et al. Low-carbon economic dispatching of power system considering capture energy consumption of carbon capture power plants with flexible operation mode[J]. Electric Power Automation Equipment, 2021, 41(9): 133–139 [5] 赵东声, 高忠臣, 刘伟. 碳捕集火电与梯级水电联合优化的低碳节能发电调度[J]. 电力系统保护与控制, 2019, 47(15): 148–155 ZHAO Dongsheng, GAO Zhongchen, LIU Wei. Low carbon and energy-saving power generation dispatching based on joint optimization of carbon capture thermal power and cascade hydropower[J]. Power System Protection and Control, 2019, 47(15): 148–155 [6] 孙惠娟, 蒙锦辉, 彭春华. 风–光–水–碳捕集多区域虚拟电厂协调优化调度[J]. 电网技术, 2019, 43(11): 4040–4051 SUN Huijuan, MENG Jinhui, PENG Chunhua. Coordinated optimization scheduling of multi-region virtual power plant with wind-power/photovoltaic/hydropower/carbon-capture units[J]. Power System Technology, 2019, 43(11): 4040–4051 [7] 田丰, 贾燕冰, 任海泉, 等. 考虑碳捕集系统的综合能源系统“源–荷”低碳经济调度[J]. 电网技术, 2020, 44(9): 3346–3355 TIAN Feng, JIA Yanbing, REN Haiquan, et al. “Source load” low carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power System Technology, 2020, 44(9): 3346–3355 [8] 崔杨, 谷春池, 付小标, 等. 考虑广义电热需求响应的含碳捕集电厂综合能源系统低碳经济调度[J]. 中国电机工程学报, 2022: 1–17 CUI Yang, GU Chunchi, FU Xiaobiao, et al. Low-carbon economic dispatch of integrated energy system with carbon capture power plants considering generalized electric heating demand response[J]. Proceedings of the CSEE, 2022: 1–17 [9] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189–207 ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(8): 189–207 [10] 鲁鹏,冯春贤,武伟鸣,等.园区能源供需价量双层Stackelberg博弈模型[J].中国电力,2022,55(6):74-79. LU Peng, FENG Chunxian, WU Weiming, et al. Two-Layer Stackelberg Game Model for Energy Supply and Demand in the Park[J]. Electric Power, 2022,55(6):74-79. [11] 随权, 马啸, 魏繁荣, 等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报, 2019, 39(6): 1603–1613, 1857 SUI Quan, MA Xiao, WEI Fanrong, et al. Day-ahead dispatching optimization strategy for energy network considering fuel cell thermal-electric comprehensive utilization[J]. Proceedings of the CSEE, 2019, 39(6): 1603–1613, 1857 [12] 荆涛, 陈庚, 王子豪, 等. 风光互补发电耦合氢储能系统研究综述[J]. 中国电力, 2022, 55(1): 75–83 JING Tao, CHEN Geng, WANG Zihao, et al. Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric Power, 2022, 55(1): 75–83 [13] 生态环境部. 2019—2020年全国碳排放权交易配额总量设定与分配实施方案(发电行业)(国环规气候〔2020〕3号)[A]. 2020. [14] 余莎, 何光层, 刘志坚, 等. 含碳捕集的电-气综合能源系统低碳经济调度[J]. 广东电力, 2022, 35(2): 74–82 YU Sha, HE Guangceng, LIU Zhijian, et al. Low-carbon economic dispatch of integrated electricity-gas energy system with carbon capture[J]. Guangdong Electric Power, 2022, 35(2): 74–82 [15] 廖跃洪, 陈洁, 杨彦飞, 等. 考虑碳捕集电厂综合灵活运行下的含P2G和光热电站虚拟电厂优化调度[J]. 电力建设, 2022, 43(4): 20–27 LIAO Yuehong, CHEN Jie, YANG Yanfei, et al. Optimal scheduling of virtual power plant with P2G and photo-thermal power plant considering the flexible operation of carbon capture power plants[J]. Electric Power Construction, 2022, 43(4): 20–27 [16] 卢志刚, 隋玉珊, 冯涛, 等. 考虑储热装置与碳捕集设备的风电消纳低碳经济调度[J]. 电工技术学报, 2016, 31(17): 41–51 LU Zhigang, SUI Yushan, FENG Tao, et al. Wind power accommodation low-carbon economic dispatch considering heat accumulator and carbon capture devices[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 41–51 [17] 付亦殊, 陈红坤, 姜欣, 等. 促进大规模风电消纳的双层调峰补偿机制研究[J]. 电力系统保护与控制, 2019, 47(4): 51–57 FU Yishu, CHEN Hongkun, JIANG Xin, et al. A bi-layer peak-regulation compensation mechanism for large-scale wind power integration[J]. Power System Protection and Control, 2019, 47(4): 51–57 [18] MAHIDIN E, HUSIN G H, et al. A critical review of the integration ofrenewable energy sources with various technologies[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 37–54. [19] LIU S, ZHOU C, GUO H M, et al. Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 55–64. [20] 王彦哲, 周胜, 姚子麟, 等. 中国煤电生命周期二氧化碳和大气污染物排放相互影响建模分析[J]. 中国电力, 2021, 54(8): 128–135 WANG Yanzhe, ZHOU Sheng, YAO Zilin, et al. Life cycle modeling analysis of the interaction between carbon dioxide and air pollutant emissions of coal power in China[J]. Electric Power, 2021, 54(8): 128–135 [21] 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254–4264 CUI Yang, YAN Shi, ZHONG Wuzhi, et al. Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power System Technology, 2020, 44(11): 4254–4264
|