中国电力 ›› 2023, Vol. 56 ›› Issue (5): 118-128.DOI: 10.11930/j.issn.1004-9649.202207079

• 电网 • 上一篇    下一篇

基于改进二进制粒子群算法的家庭负荷优化调度策略

张丽1, 刘青雷1, 张宏伟2   

  1. 1. 河南理工大学 电气工程与自动化学院, 河南 焦作 454003;
    2. 国网山西省电力公司临汾供电公司, 山西 临汾 041000
  • 收稿日期:2022-07-27 修回日期:2022-12-08 出版日期:2023-05-28 发布日期:2023-05-27
  • 作者简介:张丽(1982-),女,通信作者,博士,副教授,从事电网需求侧响应、智能用电信息技术研究,E-mail:dqzhangli@hpu.edu.cn;刘青雷(1996-),男,硕士研究生,从事电力系统优化与控制研究,E-mail:lql199@home.hpu.edu.cn;张宏伟(1990-),男,工程师,从事电力调度与信息处理研究,E-mail:18835747666@163.com
  • 基金资助:
    国家自然科学基金资助项目(基于稳定裕度补偿的大型光伏并网系统谐波谐振抑制策略研究,U1804143);河南省科技攻关项目(大容量光伏并网系统的暂态稳定性分析及其关键控制技术研究,202102210295);河南省高校基本科研业务费专项(NSFRF210424);河南理工大学青年骨干教师资助项目(2019XQG-17)。

Home Load Optimization Scheduling Strategy Based on Improved Binary Particle Swarm Optimization Algorithm

ZHANG Li1, LIU Qinglei1, ZHANG Hongwei2   

  1. 1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003, China;
    2. Linfen Power Supply Company, State Grid Shanxi Electric Power Company, Linfen 041000, China
  • Received:2022-07-27 Revised:2022-12-08 Online:2023-05-28 Published:2023-05-27
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Study on Harmonic Resonance Suppression Strategy of Large Photovoltaic Grid-connected System Based on Stability Margin Compensation, No.U1804143), Science & Technology Project of Henan Province (Transient Stability Analysis and Key Control Technology Research of Large Capacity Photovoltaic Grid-connected System, No.202102210295), Fundamental Research Funds for Universities of Henan Province (No.NSFRF210424) and Funding Project for Young Backbone Teachers of Henan University of Technology (No.2019XQG-17).

摘要: 为降低家庭用电成本以及提高户用光伏发电的就地消纳率, 提出了一种基于实时控制储能充放电行为的家庭负荷调度策略。首先,对家庭负荷分类并建立以电费最低、电力碳排放量最小及舒适度最大为目标的调度模型;其次,提出以实时光伏出力和峰谷分时电价为依据,通过控制储能充放电实现家庭负荷用电需求的调度策略;最后,利用场景分析法和分等级多策略学习的二进制粒子群改进算法(HLSBPSO)对模型进行仿真求解。 结果表明,所提策略和算法可使用户电费降低49.2%,舒适度提高67.9%,可为户用光伏发电的安全经济运行提供新的理论支持。

关键词: 需求响应, 二进制粒子群算法, 碳排放, 柔性负荷, 家庭能量管理系统

Abstract: In order to reduce the cost of household electricity consumption and improve the local consumption rate of residential photovoltaic power generation, a home load scheduling strategy is proposed based on real-time control of energy storage charging and discharging behavior. Firstly, the household loads are classified and a scheduling model is established with the objectives of lowest electricity cost, smallest carbon emission and largest comfort; secondly, based on the real-time photovoltaic output and peak-valley time-of-use electricity price, a scheduling strategy is proposed to meet the household load electricity demand through controlling the charging and discharging of energy storage; finally, the proposed model is simulated and solved using the scenario analysis method and hierarchical multi-strategy learning improved binary particle swarm optimization algorithm (HLSBPSO). The results show that the proposed strategy and algorithm can reduce the user's electricity bill by 49.2% and increase the comfort by 67.9%, which can provide a new theoretical support for the safe and economical operation of household photovoltaic power generation.

Key words: demand response, binary particle swarm algorithm, carbon emission, flexible load, home energy management system