中国电力 ›› 2022, Vol. 55 ›› Issue (12): 34-42.DOI: 10.11930/j.issn.1004-9649.202205007

• 新型电力系统储能关键技术应用 • 上一篇    下一篇

基于梅尔倒谱系数特征集的储能变流器开路故障诊断方法

余斌1, 宋兴荣1, 周挺2, 罗林波3, 李辉1, 车亮4   

  1. 1. 国网湖南省电力有限公司电力科学研究院,湖南 长沙 410007;
    2. 国网湖南省电力有限公司,湖南 长沙 410004;
    3. 国网湖南省电力有限公司 娄底供电分公司,湖南 娄底 417000;
    4. 湖南大学 电气与信息工程学院,湖南 长沙 410082
  • 收稿日期:2022-05-06 修回日期:2022-10-20 发布日期:2022-12-28
  • 作者简介:余斌(1992—),男,硕士,工程师,从事电化学储能电站设计、监控与测试技术研究,E-mail:bindongsanchi@163.com;宋兴荣(1976—),男,硕士,高级工程师,从事电力系统继电保护技术研究,E-mail:songxr@hn.sgcc.com.cn;车亮(1982—),男,通信作者,博士,教授,从事电力系统运行研究,E-mail:cheliang@hnu.com
  • 基金资助:
    国家电网有限公司科技项目(5216A521001K)

Open-Circuit Fault Diagnosis Method of Energy Storage Converter Based on MFCC Feature Set

YU Bin1, SONG Xingrong1, ZHOU Ting2, LUO Linbo3, LI Hui1, CHE Liang4   

  1. 1. Electric Power Research Institute of State Grid Hunan Electric Power Company Limited, Changsha 410007, China;
    2. State Grid Hunan Electric Power Company Limited, Changsha 410004, China;
    3. State Grid Loudi Power Supply Company, Loudi 417000, China;
    4. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
  • Received:2022-05-06 Revised:2022-10-20 Published:2022-12-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.5216A521001K).

摘要: 电池储能电站功率转换系统(power conversion system,PCS)故障诊断在储能电站智能运维中发挥着重要作用。现有方法在非侵入式识别PCS内部IGBT开路故障时,易出现信号特征提取困难、数据维度爆炸以及阈值判定区间不稳定等问题。提出一种基于梅尔倒谱系数(Mel-scale frequency cepstral coefficients,MFCC)特征集的储能变流器开路故障诊断方法。首先,以交流侧三相电流为输入信号,通过分析不同频率区间的信号频谱能量分布情况和包络特征,构建MFCC故障特征数据集。然后,结合核主成分分析(kernel principal components analysis,KPCA),实现充放电工况下非线性故障特征的降维筛选;其次,以低维故障特征集为输入,构建基于贝叶斯优化算法(bayesian optimization algorithm,BOA)与一维卷积神经网络(1d-convolutional neural network,CNN-1D)的故障状态诊断模型;最后,通过并网储能变流器的故障仿真实验,与现有方法进行比较,结果表明:所提方法在复杂的噪声环境下的鲁棒性和准确性更优。

关键词: 电池储能, 变流器, 故障诊断, 梅尔倒谱系数, 诊断模型

Abstract: Power conversion system (PCS) fault diagnosis plays an important role in the intelligent operation and maintenance of battery energy storage power stations. Considering the difficulties in signal feature extraction, data dimension explosion, and instability of threshold determination interval in the non-invasive identification of IGBT open-circuit fault in PCS by the existing methods, this paper proposes an open-circuit fault diagnosis method of energy storage converter based on Mel-scale frequency cepstral coefficients (MFCC) feature set, so as to support the normal operation and maintenance of PCS. Firstly, the three-phase current on the alternating current (AC) side is taken as the input signal, and an MFCC fault feature data set is constructed by analyzing the signal spectrum energy distribution and envelope characteristics in different frequency intervals. Then, through kernel principal component analysis (KPCA), the dimension reduction screening of nonlinear fault features under charge and discharge conditions is realized. Secondly, a fault state diagnosis model based on the Bayesian optimization algorithm (BOA) and one-dimensional convolutional neural network (CNN-1D) is constructed with a low-dimensional fault feature set as an input. Finally, through the fault simulation experiment of a grid-connected energy storage converter, the proposed method is compared with existing methods, and the results show that the proposed method has better robustness and accuracy in complex noise environments.

Key words: battery energy storage, converter, fault diagnosis, Mel-scale frequency cepstral coefficients, diagnosis model