[1] 陈浩, 胡俊杰, 袁海峰, 等. 计及配电网拥塞的集群电动汽车参与二次调频方法研究[J]. 中国电力, 2021, 54(12): 162–169 CHEN Hao, HU Junjie, YUAN Haifeng, et al. Research on supplementary frequency regulation with aggregated electric vehicles considering distribution network congestion[J]. Electric Power, 2021, 54(12): 162–169 [2] 陈岩, 靳伟, 王文宾, 等. 基于电动汽车分群的“风-网-车”联合消纳调度策略[J]. 中国电力, 2021, 54(4): 107–118 CHEN Yan, JIN Wei, WANG Wenbin, et al. Scheduling strategy for “wind-network-vehicle” joint accommodation based on electric vehicle clustering[J]. Electric Power, 2021, 54(4): 107–118 [3] 周润, 向月, 王杨, 等. 基于智能电表集总数据的家庭电动汽车充电行为非侵入式辨识与负荷预测[J]. 电网技术, 2022, 46(5): 1897–1908 ZHOU Run, XIANG Yue, WANG Yang, et al. Non-intrusive identification and load forecasting of household electric vehicle charging behavior based on smart meter data[J]. Power System Technology, 2022, 46(5): 1897–1908 [4] 王伟贤, 孙舟, 潘鸣宇, 等. 基于模糊层次分析法的电动汽车充电桩信息安全风险评估方法[J]. 中国电力, 2021, 54(1): 96–103 WANG Weixian, SUN Zhou, PAN Mingyu, et al. Information security risk assessment method for electric vehicle charging piles based on fuzzy analytic hierarchy process[J]. Electric Power, 2021, 54(1): 96–103 [5] 张良, 孙成龙, 蔡国伟, 等. 基于PSO算法的电动汽车有序充放电两阶段优化策略[J]. 中国电机工程学报, 2022, 42(5): 1837–1852 ZHANG Liang, SUN Chenglong, CAI Guowei, et al. Two-stage optimization strategy for coordinated charging and discharging of EVs based on PSO algorithm[J]. Proceedings of the CSEE, 2022, 42(5): 1837–1852 [6] 廖斌杰. 电动汽车充电设施规划及配电网接纳电动汽车能力评估[D]. 杭州: 浙江大学, 2016. LIAO Binjie. Planning of electric vehicle charging facilities and capability evaluation of a distribution network accommodating electric vehicles[D]. Hangzhou: Zhejiang University, 2016. [7] 王宇飞, 张飞, 郭俊超, 等. 城市EV时空充电负荷预测及充电站规划研究[J/OL]. 现代电力: 1–10[2022-09-27]. DOI: 10.19725/j. cnki. 1007-2322.2021. 0251. WANG Yufei, ZHANG Fei, GUO Junchao, et al. Research on spatio-temporal charging load prediction and charging station planning of urban electrical vehicles [J/OL]. Modern Electric Power: 1–10[2022-09-27]. DOI:10.19725/j.cnki.1007-2322.2021.0251. [8] 苏粟, 李玉璟, 贾泽瑞, 等. 基于GPS轨迹挖掘的电动出租车充电站规划[J]. 电力自动化设备, 2022, 42(10): 255–263 SU Su, LI Yujing, JIA Zerui, et al. Electric taxi charging station planning based on GPS trajectory mining[J]. Electric Power Automation Equipment, 2022, 42(10): 255–263 [9] 郭毅, 胡泽春, 张洪财, 等. 居民区配电网接纳电动汽车充电能力的统计评估方法[J]. 电网技术, 2015, 39(9): 2458–2464 GUO Yi, HU Zechun, ZHANG Hongcai, et al. A statistical method to evaluate the capability of residential distribution network for accommodating electric vehicle charging load[J]. Power System Technology, 2015, 39(9): 2458–2464 [10] 张帅, 姚李孝. 配电网对电动汽车可接纳能力分析[J]. 电网与清洁能源, 2019, 35(3): 37–42,57 ZHANG Shuai, YAO Lixiao. Analysis of accommodation capacity of the distribution network for electric vehicles[J]. Power System and Clean Energy, 2019, 35(3): 37–42,57 [11] 屈高强, 王诚良, 靳盘龙, 等. 新型负荷及分布式电源接入配网承载能力综合评估[J]. 电测与仪表, 2019, 56(19): 37–45,113 QU Gaoqiang, WANG Chengliang, JIN Panlong, et al. Comprehensive evaluation of carrying capacity in distribution network with new load and distributed generation[J]. Electrical Measurement & Instrumentation, 2019, 56(19): 37–45,113 [12] 徐雄军, 朱溥楠, 徐鸣, 等. 考虑安全效能成本的电动汽车充电站多目标规划方法[J]. 电网与清洁能源, 2021, 37(12): 132–138 XU Xiongjun, ZHU Punan, XU Ming, et al. A multi objective programming method of electric vehicle charging stations considering safety efficiency cost[J]. Power System and Clean Energy, 2021, 37(12): 132–138 [13] 曲大鹏, 范晋衡, 刘琦颖, 等. 考虑配电网综合运行风险的充电桩接纳能力评估与优化[J]. 电力系统保护与控制, 2022, 50(3): 131–139 QU Dapeng, FAN Jinheng, LIU Qiying, et al. Assessment and optimization of charging pile acceptance capacity considering the comprehensive operational risk of a distribution network[J]. Power System Protection and Control, 2022, 50(3): 131–139 [14] 刘新军, 周仁才, 章赟垚, 等. 配电网接纳电动汽车充电能力的评估分析[J]. 电气应用, 2020, 39(7): 96–100 LIU Xinjun, ZHOU Rencai, ZHANG Yunyao, et al. Evaluation and analysis of electric vehicle charging capacity in distribution network[J]. Electrotechnical Application, 2020, 39(7): 96–100 [15] GENG L, WANG H, ZHUANG R X, et al. Capacity evaluation method for integrated electric vehicles considering operational constraints[C]//2021 4 th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). Changsha, China. IEEE, 2021: 341–345. [16] 邵华, 贺春光, 安佳坤, 等. 基于线性约束的有源配电网规划研究[J]. 电力科学与技术学报, 2020, 35(5): 66–74 SHAO Hua, HE Chunguang, AN Jiakun, et al. Active distribution network planning model based on linearized constraints[J]. Journal of Electric Power Science and Technology, 2020, 35(5): 66–74 [17] 张勇军, 林晓明, 张紫珩, 等. 基于耐受渗透比的10 kV配电网分布式电源规划[J]. 电力系统保护与控制, 2018, 46(9): 49–54 ZHANG Yongjun, LIN Xiaoming, ZHANG Ziheng, et al. Distributed generation planning of 10 kV distribution network based on tolerant permeability ratio[J]. Power System Protection and Control, 2018, 46(9): 49–54 [18] YANG J W, ZHANG N, KANG C Q, et al. A state-independent linear power flow model with accurate estimation of voltage magnitude[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3607–3617. [19] DAI W, YANG Z F, YU J, et al. Security region of renewable energy integration: characterization and flexibility[J]. Energy, 2019, 187: 115975. [20] ZHANG D D, ZHAO J Y, DAI W, et al. A feasible region evaluation method of renewable energy accommodation capacity[J]. Energy Reports, 2021, 7: 1513–1520. [21] TALUKDAR S N, WU F F. Computer-aided dispatch for electric power systems[J]. Proceedings of the IEEE, 1981, 69(10): 1212–1231. [22] TAN Z F, ZHONG H W, WANG J X, et al. Enforcing intra-regional constraints in tie-line scheduling: a projection-based framework[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4751–4761.
|