[1] 程路, 邢璐. 2030年碳排放达到峰值对电力发展的要求及影响分析[J]. 中国电力, 2016, 49(1): 174–177 CHENG Lu, XING Lu. Analysis of requirement and impact of power development under the peak carbon emissions in 2030[J]. Electric Power, 2016, 49(1): 174–177 [2] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699–3705 BAI Jianhua, XIN Songxu, LIU Jun, et al. Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699–3705 [3] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2–11 KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2–11 [4] 赵健, 王奕凡, 谢桦, 等. 高渗透率可再生能源接入系统中储能应用综述[J]. 中国电力, 2019, 52(4): 167–177 ZHAO Jian, WANG Yifan, XIE Hua, et al. An overview of energy storage applications in power systems with high penetration renewable energy resources[J]. Electric Power, 2019, 52(4): 167–177 [5] 陈皓勇, 陈思敏, 陈锦彬, 等. 面向综合能源系统建模与分析的能量网络理论[J]. 南方电网技术, 2020, 14(2): 62–74 CHEN Haoyong, CHEN Simin, CHEN Jinbin, et al. Energy network theory for modeling and analysis of integrated energy systems[J]. Southern Power System Technology, 2020, 14(2): 62–74 [6] 国家能源局. 关于《电力系统安全稳定导则》国家标准(征求意见稿)公开征求意见的公告[EB/OL]. (2019-09-18)[2020-09-09]. http://www.nea.gov.cn/138400872_15687764261561n.pdf. [7] 中关村储能产业技术联盟. 全球储能市场跟踪报告(2020. Q2)[EB/OL]. (2020-08-17) [2020-09-09]. file: ///C: /Users/admin/Desktop/060883C713F94D0BBE99A7E95F0A78BB.pdf. [8] PAWEL I. The cost of storage-how to calculate the levelized cost of stored energy (LCOE) and applications to renewable energy generation[J]. Energy Procedia, 2014, 46: 68–77. [9] GBADEGESIN A O, SUN Y X, NWULU N I. Technoeconomic analysis of storage degradation effect on levelized cost of hybrid energy storage systems[J]. Sustainable Energy Technologies and Assessments, 2019, 36: 1–8. [10] LAI C S, LOCATELLI G, PIMM A, et al. Levelized cost of electricity considering electrochemical energy storage cycle-life degradations[J]. Energy Procedia, 2019, 158: 3308–3313. [11] XIE C P, LI Y L, DING Y L, et al. Evaluating levelized cost of storage(LCOS) based on price arbitrage operations: with liquid air energy storage(LAES) as an example[J]. Energy Procedia, 2019, 158: 4852–4860. [12] 傅旭, 李富春, 杨欣, 等. 基于全寿命周期成本的储能成本分析[J]. 分布式能源, 2020, 5(3): 34–38 FU Xu, LI Fuchun, YANG Xin, et al. Cost analysis of energy storage based on life cycle cost[J]. Distributed Energy, 2020, 5(3): 34–38 [13] MOSTAFA M H, ABDEL ALEEM S H E, ALI S G, et al. Techno-economic assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and levelized cost of energy (LCOE) metrics[J]. Energy Storage, 2020, 29: 1–24. [14] SHIN H, ROH J H. Framework for sizing of energy storage system supplementing photovoltaic generation in consideration of battery degradation[J]. IEEE Access, 2020, 8: 60246–60258. [15] 姚剑峰, 凌静, 曲立楠, 等. 基于改进FCM聚类算法的清洁能源典型场景构建[J]. 电网与清洁能源, 2019, 35(4): 76–82 YAO Jianfeng, LING Jing, QU Linan, et al. The construction method of typical scenario set for renewable energy based on improved FCM clustering algorithm[J]. Power System and Clean Energy, 2019, 35(4): 76–82 [16] 高菠阳, 罗会琳, 黄志基, 等. 中国工业用地出让价格空间格局及影响因素[J]. 地球信息科学学报, 2020, 22(6): 1189–1201 GAO Boyang, LUO Huilin, HUANG Zhiji, et al. Research on the spatial layout of and factors affecting the price of industrial land in China[J]. Journal of Geo-Information Science, 2020, 22(6): 1189–1201 [17] 胡静, 黄碧斌, 蒋莉萍, 等. 适应电力市场环境下的电化学储能应用及关键问题[J]. 中国电力, 2020, 53(1): 100–107 HU Jing, HUANG Bibin, JIANG Liping, et al. Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power, 2020, 53(1): 100–107 [18] 李相俊, 王上行, 惠东. 电池储能系统运行控制与应用方法综述及展望[J]. 电网技术, 2017, 41(10): 3315–3325 LI Xiangjun, WANG Shangxing, HUI Dong. Summary and prospect of operation control and application method for battery energy storage systems[J]. Power System Technology, 2017, 41(10): 3315–3325 [19] 聂聪颖, 沈小军, 吕洪, 等. 并网型风电场氢超混合储能容量配置及控制策略研究[J]. 智慧电力, 2020, 48(9): 1–8 NIE Congying, SHEN Xiaojun, LYU Hong, et al. Capacity configuration and control strategy of hydrogen super hybrid energy storage in grid connected wind farm[J]. Smart Power, 2020, 48(9): 1–8 [20] 赵伟, 袁锡莲, 周宜行, 等. 考虑运行寿命内经济性最优的梯次电池储能系统容量配置方法[J]. 电力系统保护与控制, 2021, 49(12): 16–24 ZHAO Wei, YUAN Xilian, ZHOU Yixing, et al. Capacity configuration method of a second-use battery energy storage system considering economic optimization within service life[J]. Power System Protection and Control, 2021, 49(12): 16–24 [21] 卢炳文, 魏震波, 魏平桉, 等. 考虑消纳风电的区域综合能源系统电转气与储能设备优化配置[J]. 智慧电力, 2021, 49(5): 7–14, 68 LU Bingwen, WEI Zhenbo, WEI Pingan, et al. Optimal configuration of PtG and energy storage equipment in regional integrated energy system considering wind power consumption[J]. Smart Power, 2021, 49(5): 7–14, 68 [22] 陈岩, 靳伟, 王文宾, 等. 区域储能站参与扰动平抑的配电网多时间尺度自律策略[J]. 电力系统保护与控制, 2021, 49(7): 134–143 CHEN Yan, JIN Wei, WANG Wenbin, et al. Regional energy storage stations participate in disturbance stabilization of a distribution network multi-time-scale self-discipline operation strategy[J]. Power System Protection and Control, 2021, 49(7): 134–143 [23] 赵璞, 潘乐真. 考虑联络线利用率与储能寿命特性的海岛微电网优化运行策略[J]. 南方电网技术, 2021, 15(2): 48–55 ZHAO Pu, PAN Lezhen. Optimal operation strategy of island microgrid considering Tie-line utilization and energy storage life characteristics[J]. Southern Power System Technology, 2021, 15(2): 48–55 [24] 李哲, 李俊杰, 周念成, 等. 基于多能源协同的微能网群能源转供优化模型[J]. 南方电网技术, 2021, 15(1): 89–98 LI Zhe, LI Junjie, ZHOU Niancheng, et al. An optimal energy transfer model based on multi-energy collaboration in micro-energy network group[J]. Southern Power System Technology, 2021, 15(1): 89–98 [25] 方金涛, 龚庆武. 考虑需求响应并计及液流电池动态特性的主动配电网系统储能优化配置[J]. 智慧电力, 2019, 47(11): 1–8 FANG Jintao, GONG Qingwu. Optimal allocation of energy storage system in active distribution network considering demand response and dynamic characteristics of VRB[J]. Smart Power, 2019, 47(11): 1–8
|