中国电力 ›› 2021, Vol. 54 ›› Issue (8): 52-59.DOI: 10.11930/j.issn.1004-9649.202006274

• 电能质量及其治理技术专栏 • 上一篇    下一篇

基于迁移学习的配电网内部过电压识别方法

徐浩1,2, 刘利强1,2, 吕超3   

  1. 1. 内蒙古工业大学 电力学院,内蒙古 呼和浩特 010080;
    2. 内蒙古自治区电能变换传输与控制重点实验室,内蒙古 呼和浩特 010080;
    3. 内蒙古电力科学研究院,内蒙古 呼和浩特 010020
  • 收稿日期:2020-07-02 修回日期:2021-04-15 发布日期:2021-08-05
  • 作者简介:徐浩(1994-),男,硕士研究生,从事电气设备状态检测与故障诊断方面的研究,E-mail:924326154@qq.com;刘利强(1975-),男,通信作者,博士,教授,从事电工新技术在电力系统中的应用研究,E-mail:llqiang@imut.edu.cn
  • 基金资助:
    内蒙古自治区自然科学基金面上项目(2020MS05029)

An Internal Overvoltage Identification Method for Distribution Network Based on Transfer Learning

XU Hao1,2, LIU Liqiang1,2, LV Chao3   

  1. 1. College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China;
    2. Inner Mongolia Key Laboratory of Electrical Energy Conversion Transmission and Control, Hohhot 010080, China;
    3. Inner Mongolia Electric Power Research Institute, Hohhot 010020, China
  • Received:2020-07-02 Revised:2021-04-15 Published:2021-08-05
  • Supported by:
    This work is supported by Natural Science Foundation of Inner Mongolia Province in China (No.2020MS05029)

摘要: 数据驱动方式作为解决配电网内部过电压识别的一种方法,因过电压样本数量较少而在实际应用中受到限制。为此,提出了一种基于迁移学习的深度卷积神经网络(D-CNN)配电网内部过电压识别算法。首先,通过仿真和连续小波变换(CWT)的方法构造了6种10 kV配电网内部过电压二维时频图。然后,分别利用Alexnet、Vgg-16、Googlenet、Resnet50等4种网络模型搭建了基于迁移学习的D-CNN网络模型。最后,将二维时频图带入改造后的D-CNN训练。经对实验结果比较分析发现,新搭建的VGG-16网络识别准确率最高且达到了99.07%,实现了在数据稀缺的情况下过电压故障的准确分类。

关键词: 配电网内部过电压, 连续小波变换, 迁移学习, 深度卷积神经网络, 模式识别

Abstract: As a measure for internal overvoltage identification of distribution network, the data driving method is limited in practical applications due to the small number of overvoltage samples. A transfer-learning-based deep convolutional neural network (D-CNN) algorithm is thus proposed to identify the internal overvoltage of distribution network. Firstly, 6 types of two-dimension time-frequency maps of 10 kV distribution network internal overvoltage are constructed by simulation and continuous wavelet transform (CWT). Then, the transfer-learning-based D-CNN network models are built using four network models, including Alexnet, Vgg-16, Googlenet and Resnet50. Finally, the two-dimension time-frequency maps are introduced into the transformed D-CNN for training. By comparing and analyzing the experimental results, it is found that the newly constructed VGG-16 network model has the highest identification accuracy, reaching 99.07%, which realizes the accurate classification of overvoltage faults in the case of scarce data.

Key words: internal overvoltage of distribution network, continuous wavelet transform, transfer learning, deep convolutional neural network, pattern recognition