[1] 王波, 马富齐, 董旭柱, 等. 电力深度视觉: 基本概念、关键技术与应用场景[J]. 广东电力, 2019, 32(9): 3-10 WANG Bo, MA Fuqi, DONG Xuzhu, et al. Electric power depth vision: basic concepts, key technologies and application scenarios[J]. Guangdong Electric Power, 2019, 32(9): 3-10 [2] 康龙. 基于红外图像处理的变电站设备故障诊断[D]. 北京: 华北电力大学, 2016. KANG Long. Substation equipment fault diagnosis based on infrared image processing[D]. Beijing: North China Electric Power University, 2016. [3] JAFFERY Z A, DUBEY A K. Design of early fault detection technique for electrical assets using infrared thermograms[J]. International Journal of Electrical Power & Energy Systems, 2014, 63: 753-759. [4] LAURENTYS ALMEIDA C A, BRAGA A P, NASCIMENTO S, et al. Intelligent thermographic diagnostic applied to surge arresters: a new approach[J]. IEEE Transactions on Power Delivery, 2009, 24(2): 751-757. [5] 尹阳. 基于红外图像的变电站设备识别与热状态监测系统研究[D]. 西安: 西安科技大学, 2018. YIN Yang. Research on substation equipment identification and thermal state monitoring system based on infrared image[D]. Xi'an: Xi'an University of Science and Technology, 2018. [6] 李云昊. 基于红外成像的嵌入式变压器故障检测技术的研究[D]. 重庆: 重庆理工大学, 2018. LI Yunhao. Research on embedded system for transformer fault detection based on infrared imaging technology[D]. Chongqing: Chongqing University of Technology, 2018. [7] 邹辉, 黄福珍. 基于FAsT-Match算法的电力设备红外图像分割[J]. 红外技术, 2016, 38(1): 21-27 ZOU Hui, HUANG Fuzhen. Infrared image segmentation for electrical equipment based on FAsT-match algorithm[J]. Infrared Technology, 2016, 38(1): 21-27 [8] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017. Venice. IEEE, 2017: 2961-2969. [9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [10] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [11] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 6154-6162. [12] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017. Honolulu, HI. IEEE, 2017: 2117-2125. [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016: 770-778. [14] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv: 1502.03167, 2015. [15] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. [16] BOTTOU L. Large-scale machine learning with stochastic gradient descent[M]//Proceedings of COMPSTAT'2010. Heidelberg: Physica-Verlag HD, 2010: 177-186. [17] ZHANG J, HU J L. Image segmentation based on 2D otsu method with histogram analysis[C]//2008 International Conference on Computer Science and Software Engineering, December 12-14, 2008. Wuhan, China. IEEE, 2008: 105-108. [18] 陆剑锋, 林海, 潘志庚. 自适应区域生长算法在医学图像分割中的应用[J]. 计算机辅助设计与图形学学报, 2005, 17(10): 2168-2173 LU Jianfeng, LIN Hai, PAN Zhigeng. Adaptive region growing algorithm in medical images segmentation[J]. Journal of Computer Aided Design & Computer Graphics, 2005, 17(10): 2168-2173 [19] 何慧敏, 杨承志, 刘贺, 等. 一种基于红外热图的温度提取方法[J]. 计算技术与自动化, 2016, 35(3): 85-89 HE Huimin, YANG Chengzhi, LIU He, et al. A method for extracting temperature based on infrared thermographs[J]. Computing Technology and Automation, 2016, 35(3): 85-89 [20] 高嵩, 陆倚鹏, 王笑倩, 等. 基于深度学习的悬式瓷绝缘子红外图像识别方法[J]. 电力科学与技术学报, 2020, 35(5):119-125. GAO Song, LU Yipeng, WANG Xiaoqian. Infrared image recognition method of porcelain disc-suspended insulators based on deep learning technology[J]. Journal of Electric Power Science and Technology, 2020, 35(5):119-125.
|