[1] 李泽文, 周卿松, 曾祥君, 等. 基于行波模量传输时差的配电网接地故障定位新方法[J]. 中国电力, 2015, 48(9):67-72 LI Zewen, ZHOU Qingsong, ZENG Xiangjun, et al. New fault location method based on time difference of traveling wave mode-component in distribution network[J]. Electric Power, 2015, 48(9):67-72 [2] 杨勇, 李立浧, 杜林, 等. 采用时频矩阵奇异值分解和多级支持向量机的雷电及操作过电压识别[J]. 电网技术, 2012, 36(8):31-37 YANG Yong, LI Licheng, DU Lin, et al. Lightning and switching overvoltage identification based on singular value decomposition of time-frequency matrix and multi-level support vector machine[J]. Power System Technology, 2012, 36(8):31-37 [3] GAO W, WAI R J, LIAO Y F, et al. Internal overvoltage identification of distribution network via time-frequency atomic decomposition[J]. IEEE Access, 2019, 7:85110-85122. [4] 金涛, 许立彬, 高伟, 等. 一种基于LCD-Hilbert变换和奇异谱熵的配电网暂时过电压类型识别方法[J]. 电机与控制学报, 2018, 22(11):26-36 JIN Tao, XU Libin, GAO Wei, et al. Temporary overvoltage classification and recognition method of distribution network based on LCD-Hilbert transform and singular-spectrum entropy[J]. Electric Machines and Control, 2018, 22(11):26-36 [5] GUO Y M, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding:a review[J]. Neurocomputing, 2016, 187:27-48. [6] 高熠, 田联房, 杜启亮. 基于Mask R-CNN的复合绝缘子过热缺陷检测[J/OL]. 中国电力:1-8[2020-07-01]. http://kns.cnki.net/kcms/detail/11.3265.TM.20200424.0827.002.html. GAO Yi, TIAN Lianfang, DU Qiliang. Mask overheating defect detection of composite insulator based on mask R-CNN[J/OL]. Electric Power:1-8[2020-07-01]. http://kns.cnki.net/kcms/detail/11.3265.TM.20200424.0827.002.html. [7] 高伟, 杨耿杰, 郭谋发, 等. 基于DTCWT-DBN的配电网内部过电压类型识别[J]. 电力系统保护与控制, 2019, 47(9):80-89 GAO Wei, YANG Gengjie, GUO Moufa, et al. Internal overvoltage type identification for distribution network based on DTCWT-DBN algorithm[J]. Power System Protection and Control, 2019, 47(9):80-89 [8] GUO M F, YANG N C, CHEN W F. Deep-learning-based fault classification using Hilbert-Huang transform and convolutional neural network in power distribution systems[J]. IEEE Sensors Journal, 2019, 19(16):6905-6913. [9] 郑智聪, 王红, 齐林海. 基于深度学习模型融合的电压暂降源识别方法[J]. 中国电机工程学报, 2019, 39(1):97-104, 324 ZHENG Zhicong, WANG Hong, QI Linhai. Recognition method of voltage sag sources based on deep learning models' fusion[J]. Proceedings of the CSEE, 2019, 39(1):97-104, 324 [10] 高伟, 郭谋发, 许立彬. 基于改进CWD-CNN的配电网内部过电压类型识别方法[J/OL]. 电机与控制学报:1-10[2020-06-13]. http://kns.cnki.net/kcms/detail/23.1408.TM.20200107.1031.006.html. GAO Wei, GUO Moufa, XU Libin. A method for identifying internal overvoltage type for distribution network via improved CWD-CNN[J/OL]. Electric Machines and Control:1-10[2020-06-13]. http://kns.cnki.net/kcms/detail/23.1408.TM.20200107.1031.006.html. [11] 廖宇飞, 杨耿杰, 高伟, 等. 基于AD-CNN算法的配电网内部过电压识别技术[J]. 高电压技术, 2019, 45(10):3182-3191 LIAO Yufei, YANG Gengjie, GAO Wei, et al. Recognition technology of internal overvoltage in distribution network based on AD-CNN algorithm[J]. High Voltage Engineering, 2019, 45(10):3182-3191 [12] 林刚, 王波, 彭辉, 等. 基于强泛化卷积神经网络的输电线路图像覆冰厚度辨识[J]. 中国电机工程学报, 2018, 38(11):3393-3401 LIN Gang, WANG Bo, PENG Hui, et al. Identification of icing thickness of transmission line based on strongly generalized convolutional neural network[J]. Proceedings of the CSEE, 2018, 38(11):3393-3401 [13] ZHANG R, TAO H Y, WU L F, et al. Transfer learning with neural networks for bearing fault diagnosis in changing working conditions[J]. IEEE Access, 2017, 5:14347-14357. [14] 周自强, 纪扬, 苏烨, 等. 基于迁移学习卷积神经网络的电缆隧道锈蚀识别算法[J]. 中国电力, 2019, 52(4):104-110 ZHOU Ziqiang, JI Yang, SU Ye, et al. A hybrid transfer learning/CNN algorithm for cable tunnel rust recognition[J]. Electric Power, 2019, 52(4):104-110 [15] 孟子超, 杜文娟, 王海风. 基于迁移学习深度卷积神经网络的配电网故障区域定位[J]. 南方电网技术, 2019, 13(7):25-33 MENG Zichao, DU Wenjuan, WANG Haifeng. Distribution network fault area location based on deep convolution neural network with transfer learning[J]. Southern Power System Technology, 2019, 13(7):25-33 [16] KAUR T, GANDHI T K. Deep convolutional neural networks with transfer learning for automated brain image classification[J]. Machine Vision and Applications, 2020, 31(3):1-16. [17] GUO M F, YANG N C. Features-clustering-based earth fault detection using singular-value decomposition and fuzzy c-means in resonant grounding distribution systems[J]. International Journal of Electrical Power & Energy Systems, 2017, 93:97-108. [18] GUO M F, ZENG X D, CHEN D Y, et al. Deep-learning-based earth fault detection using continuous wavelet transform and convolutional neural network in resonant grounding distribution systems[J]. IEEE Sensors Journal, 2018, 18(3):1291-1300. [19] 冯秋实, 陈剑云, 林鹏, 等. 基于连续小波变换的输电线路故障行波测距方法的研究[J]. 电测与仪表, 2016, 53(2):40-44 FENG Qiushi, CHEN Jianyun, LIN Peng, et al. The research of transmission line fault location method based on the continuous wavelet transform[J]. Electrical Measurement & Instrumentation, 2016, 53(2):40-44 [20] 钱国超, 赵仲勇, 邹德旭, 等. 基于连续小波变换的变压器绕组变形故障类型检测[J]. 高电压技术, 2017, 43(6):2016-2023 QIAN Guochao, ZHAO Zhongyong, ZOU Dexu, et al. Detection of transformer winding deformation fault types based on continuous wavelet transform[J]. High Voltage Technology, 2017, 43(6):2016-2023 [21] WANG J. Identification technology of substation lightning overvoltage based on wavelet transform research and application[C]//2020 5th Asia Conference on Power and Electrical Engineering (ACPEE). IEEE, 2020:1746-1750. [22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012:1097-1105. [23] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. [24] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015:1-9. [25] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016:770-778.
|