[1] 裴哲义,丁杰,李晨,等. 分布式光伏并网问题分析与建议[J]. 中国电力, 2018, 51(10):80-87 PEI Zheyi, DING Jie, LI Chen, et al. Analysis and suggestion for distributed photovoltaic generation[J]. Electric Power, 2018, 51(10):80-87 [2] 孙建梅,陈璐. 基于LCOE的分布式光伏发电并网效益分析[J]. 中国电力, 2018, 51(3):88-93 SUN Jianmei, CHEN Lu. Analysis on grid-connected benefit of distributed photovoltaic power generation based on LCOE model[J]. ElectricPower, 2018, 51(3):88-93 [3] ALAM M K, KHAN F, JOHNSON J, et al. A comprehensive review of catastrophic faults in PV arrays:types, detection, and mitigation techniques[J]. IEEE Journal of Photovoltaics, 2015, 5(3):982-997. [4] TANG J N, ZHU Y Q, WANG W S. Fault diagnosis method and simulation analysis for photovoltaic array[C]//International Conference on Electrical & Control Engineering. YiChang, China:IEEE, 2011:1569−1573. [5] 胡义华, 陈昊, 徐瑞东.基于电压扫描的光伏阵列故障诊断策略[J].中国电机工程学报, 2010, 30(增刊1):185–191. HU Yihua, CHEN Hao, XU Ruidong. A type of PV array fault diagnosis strategy based on voltage scan[J]. Proceedings of the CSEE, 2010, 30(S1):185–191. [6] SPATARU S, SERA D, KEREKES T, et al. Diagnostic method for photovoltaic systems based on light I-V measurements[J]. Solar Energy, 2015(119):29-44. [7] HACHANA O, TINA G M, HEMSAS K E. PV array fault diagnostic technique for BIPV systems[J]. Energy & Buildings, 2016(126):263-274. [8] 王元章, 吴春华, 周笛青, 等. 基于BP神经网络的光伏阵列故障诊断研究[J]. 电力系统保护与控制, 2013, 41(16):108-114 WANG Yuanzhang, WU Chunhua, ZHOU Diqing, et al. A survey of fault diagnosis for PV array based on BP neural network[J]. Power System Protection and Control, 2013, 41(16):108-114 [9] 韩伟, 王宏华, 王成亮, 等. 基于参数辨识的光伏组件故障诊断模型[J]. 电网技术, 2015, 39(5):1198-1204 HAN Wei, WANG Honghua, WANG Chengliang, et al. Parameter identification based fault diagnosis model of photovoltaic modules[J]. Power System Technology, 2015, 39(5):1198-1204 [10] 毕锐, 丁明, 徐志成, 等. 基于模糊C均值聚类的光伏阵列故障诊断方法[J]. 太阳能学报, 2016, 37(3):730-736 BI Rui, DING Ming, XU Zhicheng, et al. PV array fault diagnosis based on FCM[J]. Journal of Solar Energy, 2016, 37(3):730-736 [11] 陈凌, 韩伟, 张经炜. 基于数据融合的光伏组件故障诊断[J]. 电网技术, 2017, 41(6):1864-1873 CHEN Ling, HAN Wei, ZHANG Jingwei. PV module fault diagnosis based on data fusion[J]. Power System Technology, 2017, 41(6):1864-1873 [12] YI Z, ETEMADI A. Fault detection for photovoltaic systems based on multi-resolution signal decomposition and fuzzy inference systems[J]. IEEE Transactions on Smart Grid, 2016:1-1. [13] 李元良, 丁坤, 陈富东, 等. 基于快速过采样主成分分析法的光伏阵列故障诊断[J]. 电网技术, 2019, 43(1):308-315 LI Yuanliang, DING Kun, CHEN Fudong, et al. Fault Diagnosis method of PV array based on fast OS-PCA[J]. Power System Technology, 2019, 43(1):308-315 [14] 任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8):1345-1358 REN Hao, QU Jianfeng, CHAI Yi, et al. Deep learning for fault diagnosis:The state of the art and challenge[J]. Control and Decision, 2017, 32(8):1345-1358 [15] 谢跃, 梁瑞宇, 包永强, 等. 融合改进梅尔谱特征和深信念网络的语音测谎算法[J]. 声学学报, 2019, 44(2):214-220 XIE Yue, LIANG Ruiyu, BAO Yongqiang, et al. Deception detection with spectral features based on deep belief network[J]. Acta Acustica, 2019, 44(2):214-220 [16] FATAHI M, AHMADI M, AHMADI A, et al. Towards an spiking deep belief network for face recognition application[C]//Proceedings of International Conference on Computer and Knowledge Engineering. Masshad, Zran:IEEE, 2016:153−158. [17] 李巍华, 单外平, 曾雪琼. 基于深度信念网络的轴承故障分类识别[J]. 振动工程学报, 2016, 29(3):340-347 LI weihua, SHAN Waiping, ZENG Xueqiong. Bearing fault identification based on deep belief network[J]. Journal of Vibration Engineering, 2016, 29(3):340-347 [18] 石鑫, 朱永利, 萨初日拉, 等. 基于深度信念网络的电力变压器故障分类建模[J]. 电力系统保护与控制, 2016, 44(1):71-76 SHI Xin, ZHU Yongli, SA Churila, et al. Power transformer fault classifying model based on deep belief network[J]. Power System Protection and Control, 2016, 44(1):71-76 [19] 代杰杰, 宋辉, 杨祎, 等. 基于油中气体分析的变压器故障诊断ReLU-DBN方法[J]. 电网技术, 2018, 42(2):658-664 DAI Jiejie, SONG Hui, YANG Wei, et al. Dissolved gas analysis of insulating oil for power transformer fault diagnosis based on ReLU-DBN[J]. Power System Technology, 2018, 42(2):658-664 [20] 车畅畅, 王华伟, 刘伟. 基于深度信念网络的航空发动机维修等级决策[J]. 航空动力学报, 2018, 33(6):1528-1536 CHE Changchang, WANG Huawei, LIU Wei. Maintenance level decision for aero-engine based on deep belief network[J]. Journal of Aerospace Power, 2018, 33(6):1528-1536 [21] 朱乔木, 党杰, 陈金富, 等. 基于深度置信网络的电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2018, 38(3):735-743 ZHU Qiaomu, DANG Jie, CHEN Jinfu, et al. A method for power system transient stability assessment based on deep belief networks[J]. Proceedings of the CSEE, 2018, 38(3):735-743 [22] HINTON G EA practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1):926−947. [23] CHEN E K, YANG X K, ZHA H Y, et al.Learning object classes from image thumbnails through deep neural networks[C]//Proceeding of 2008 International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA:IEEE, 2008:829−832. [24] 王元章, 李智华, 吴春华. 一种四参数的光伏组件在线故障诊断方法[J]. 中国电机工程学报, 2014, 34(13):2078-2087 WANG Yuanzhang, LI Zhihua, WU Chunhua. A survey of online fault diagnosis for photovoltaic modules based on four parameters[J]. Proceedings of the CSEE, 2014, 34(13):2078-2087 [25] MEYER E L, VAN Dyk E E. Assessing the reliability and degradation of photovoltaic module performance parameters[J]. IEEE Transactions on Reliability, 2004, 53(1):83-93. [26] 李育强,宋国兵,王维庆,晁勤.基于参数识别光伏接入配网永久性故障判别方法[J].电力系统保护与控制,2017,45(16):1−7. LI Yuqiang, SONG Guobing, WANG Weiqing,et al. Permanent fault identification method based on parameter identification for photovoltaic access to distribution network[J]. Power System Protection and Control, 2017,45(16):1−7. |