[1] 汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7):1760-1771 TANG Guangfu, PANG Hui, HE Zhiyuan. R&D and application of advanced power transmission technology in china[J]. Proceedings of the CSEE, 2016, 36(7):1760-1771 [2] 王敏, 宗炫君, 袁越, 等. 含光伏电站的发电系统可靠性分析[J]. 中国电机工程学报, 2013(34):42-49 WANG Min, ZONG Xuanjun, YUAN Yue,et al. Reliability analysis of generation systems with photovoltaic stations[J]. Proceedings of the CSEE, 2013(34):42-49 [3] BUSCA C, TEODORESCU R, BLAABJERG F, et al. An overview of the reliability prediction related aspects of high power IGBTs in wind power applications[J]. Microelectronics Reliability, 2011, 51(9-11):1903-1907. [4] YANG S, BRYANT A, MAWBY P, et al. An industry based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3):1441-1451. [5] WANG H, LISERRE M, BLAABJERG F. Toward reliable power electronics:challenges, design tools, and opportunities[J]. IEEE Industrial Electronics Magazine, 2013, 7(2):17-26. [6] CHOI U M, BLAABJERG F, LEE K B. Study and handling methods of power IGBT module failures in power electronic converter systems[J]. IEEE Transactions on Power Electronics, 2015, 30(5):2517-2533. [7] HUGO G, FEDERICO B, MARIO J D. A IGBT-gating failure effect on a fault-tolerant predictive current-controlled five-phase induction motor drive[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1):15-20. [8] 王雪松, 赵争鸣, 袁立强, 等. 应用于大容量变换器的IGBT并联技术[J]. 电工技术学报, 2012, 27(10):155-162 WANG Xuesong, ZHAO Zhengming, YUAN Liqiang, et al. Parallel technique for IGBT modules applied in high-power converter[J]. Transactions of China Electrotechnical Society, 2012, 27(10):155-162 [9] DENG E, ZHAO Z, XIN Q, et al. Analysis on the difference of the characteristic between high power IGBT modules and press pack IGBTs[J]. Microelectronics Reliability, 2017, 78:25-37. [10] SADEGH M, MOSTAFA Z, SHAHRIYAR K, et al. A series stacked igbt switch with robustness against short-circuit fault for pulsed power applications[J]. IEEE Transactions on Power Electronics, 2018, 33(5):3779-3790. [11] YANG Xin, YUAN Ye, LONG Zhiqiang, et al. Robust stability analysis of active voltage control for high-power igbt switching by Kharitonov's theorem[J]. IEEE Transactions on Power Electronics, 2016, 31(3):2584-2595. [12] FEI Yang, HONG Chen, XIAOLI Tian. Investigation on Current Crowding Effect in IGBTs[J]. IEEE Transactions on Electron Devices, 2018, 65(2):636-640. [13] 王春雷, 郑利兵, 方化潮, 等. 键合线失效对于IGBT模块性能的影响分析[J]. 电工技术学报, 2014, 29(增刊1):184-191. WANG Chunlei, ZHENG Libing, FANG Huachao, et al. Analysis of the Performance Effect with Bonding Wires Lift-Off in IGBT Modules[J]. Transactions of China Electrotechnical Society, 2014, 29(S1):184-191. [14] 孔梅娟. IGBT键合线故障特征分析和状态监测技术研究[D]. 天津:河北工业大学, 2017. [15] 汪波, 胡安, 唐勇, 等. IGBT电压击穿特性分析[J]. 电工技术学报, 2011, 26(8):145-150 WANG Bo, HU An, TANG Yong, et al. Analysis of voltage breakdown characteristic of IGBT[J]. Transactions of China Electrotechnical Society, 2011, 26(8):145-150 [16] MAURO C. Selected failure mechanisms of modern power modules[J]. Microelectronics Reliability, 2002, 40(4-5):653-667. [17] CIAPPA M, FICHTNER W. Lifetime prediction of IGBT modules for traction applications[C]//38th Annual IEEE International Reliability Physics Symposium Proceedings, San Jose, 2000:210-216. [18] 姚芳, 马静, 唐圣学, 等. IGBT模块键合损伤机理、演化规律及状态监测[J]. 仪器仪表学报, 2019, 40(4):88-99 YAO Fang, MA Jing, TANG Shengxue, et al. Bonding damage mechanism, evolution rule and condition monitoring of IGBT module[J]. Chinese Journal of Scientific Instrument, 2019, 40(4):88-99 [19] 王学梅, 张波, 吴海平. 基于失效物理的功率器件疲劳失效机理[J]. 电工技术学报, 2019, 34(4):717-727 WANG Xuemei, ZHANG Bo, WU Haiping. A review of fatigue mechanism of power devices based on physics-of-failure[J]. Transactions of China Electrotechnical Society, 2019, 34(4):717-727 [20] 任磊, 韦徵, 龚春英, 等. 电力电子电路功率器件故障特征参数提取技术综述[J]. 中国电机工程学报, 2015, 35(12):3089-3101 REN Lei, WEI Zheng, GONG Chunying, et al. Fault feature extraction techniques for power devices in power electronic converters:A review[J]. Proceedings of the CSEE, 2015, 35(12):3089-3101 [21] CZERNY B, LEDERER M, NAGL B, et al. Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions[J]. Microelectronics Reliability, 2012, 52(9-10):2353-2357. [22] CHOI U M, BLAABJERG F, JØRGENSEN S, et al. Power cycling test and failure analysis of molded intelligent power IGBT module under different temperature swing durations[J]. Microelectronics Reliability, 2016, 64:403-408. [23] HUANG H, MAWBY P. A lifetime estimation technique for voltage source inverters[J]. IEEE Transactions on Power Electronics, 2013, 28(8):4113-4119. [24] ZHUANG W, CHANG P, CHOU F, et al. Effect of solder creep on the reliability of large area die attachment[J]. Microelectronics Reliability, 2001, 41(12):2011-2021. [25] BOUARROUDJ M, KHATIR Z, OUSTEN J P, et al. Comparison of stress distributions and failure modes during thermal cycling and power cycling on high power IGBT modules[C]//2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, 2007:1-10. [26] 肖飞, 罗毅飞, 刘宾礼, 等. 焊料层空洞对IGBT器件热稳定性的影响[J]. 高电压技术, 2018, 44(5):1499-1506 XIAO Fei, LUO Yifei, LIU Binli, et al. Influence of voids in solder layer on the temperature stability of IGBTs[J]. High Voltage Engineering, 2018, 44(5):1499-1506 [27] 孙海峰, 杨舒曼. 焊料层空洞对绝缘栅双极型晶体管(IGBT)模块温度分布的影响[J]. 科学技术与工程, 2018, 18(32):189-194 SUN Haifeng, YANG Shuman. Influence of solder void on temperature distribution of insulated gate bipolar transistor (IGBT) module[J]. Science Technology and Engineering, 2018, 18(32):189-194 [28] SMET V, FOREST F, HUSELSTEIN J J, et al. Ageing and failure modes of IGBT modules in high-temperature power cycling[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10):4931-4941. [29] XU L, WANG M, ZHOU Y, et al. An optimal structural design to improve the reliability of Al2O3-DBC substrates under thermal cycling[J]. Microelectronics Reliability, 2015, 56(6):101-108. [30] BAZZO J P, TIAGO L, MARCIO V, et al. Thermal characteristics analysis of an IGBT using a fiber brag grating[J]. Optics and Lasers in Engineering, 2012, 50(2):99-103. [31] MAHERA M, PAUL P A, JOⅡNSON C M, et al. Power electronic device temperature estimation and control in pulsed and converter applications[J]. Control Engineering Practice, 2008, 16(2):1438-1442. [32] 黄欢. IGBT功率模块热传导与退化研究[D]. 天津:河北工业大学, 2015. [33] 李武华, 陈玉香, 罗皓泽, 等. 大容量电力电子器件结温提取原理综述及展望[J]. 中国电机工程学报, 2016, 36(13):3546-3557 LI Wuhua, CHEN Yuxiang, LUO Haoze, et al. Review and prospect of junction temperature extraction principle of high power semiconductor devices[J]. Proceedings of the CSEE, 2016, 36(13):3546-3557 [34] COVA P, FANTINI F. On the effect of power cycling stress on IGBT modules[J]. Microelectronics Reliability, 1998, 38(6-8):1347-1352. [35] BRYANT A, YANG S, MAWBY P, et al. Investigation into IGBT dv/dt during turn-off and its temperature dependence[J]. IEEE Transactions on Power Electronics, 2011, 26(10):3019-3031. [36] CASTELLAZZI A, MERMET-GUYENNET M, BARLINI D, et al. New technique for the measurement of the static and of the transient junction temperature in IGBT devices under operating conditions[J]. Microelectronics Reliability, 2006, 46(9):1772-1777. [37] CHEN Yuxiang, LUO Haoze, LI Wuhua, et al. Analytical and experimental investigation on a dynamic thermo-sensitive electrical parameter with maximum dic/dt during turn-off for high power trench gate/field-stop IGBT modules[J]. IEEE Transactions on Power Electronics, 2017, 32(8):6394-6404. [38] 彭英舟, 周雒维, 孙鹏菊, 等. 基于开通密勒平台电压的IGBT模块结温估计研究[J]. 中国电机工程学报, 2017, 37(11):3254-3262,3381 PENG Yingzhou, ZHOU Luowei, SUN Pengju, et al. Study of IGBT junction temperature estimation based on turn-on miller platform voltage[J]. Proceedings of the CSEE, 2017, 37(11):3254-3262,3381 [39] SUNDARAMOORTHY V, BIANDA E, BLOCH R, et al. Online estimation of IGBT junction temperature (Tj) using gate-emitter voltage (Vge) at turn-off[C]//2013 15th European Conference on Power Electronics and Applications (EPE). 2013:1-10. [40] 刘宾礼, 刘德志, 唐勇, 等. 基于IGBT栅极疲劳机理的阈值电压可靠性模型研究[J]. 电力电子技术, 2015, 49(4):36-38, 60 LIU Binli, LIU Dezhi, TANG Yong, et al. Reliability model research of threshold voltage based on the gate fatigue mechanism of IGBT[J]. Power Electronics, 2015, 49(4):36-38, 60 [41] STRAUSS B, LINDEMANN A. Measuring the junction temperature of an IGBT using its threshold voltage as a temperature sensitive electrical parameter (TSEP)[C]//2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), 2016:459-467. [42] LUO Haoze, CHEN Yuxiang, SUN Pengfei, et al. Junction temperature extraction approach with turn-off delay time for high-voltage high-power IGBT modules[J]. IEEE Transactions on Power Electronics, 2016, 31(7):5122-5132. [43] CCOA B A J, STRAUSS B, MITIC G, et al. Investigation of temperature sensitive electrical parameters for power semiconductors (IGBT) in real-time applications[C]//PCIM Europe, 2014:1-9. [44] BAKER N, MUNK-NIELSEN S, LISERRE M, et al. Online junction temperature measurement via internal gate resistance during turn-on[C]//EPE'14-ECCE Europe, 2014:1-10. [45] XU Zhuxian, XU Fan, WANG Fei. Junction temperature measurement of IGBTs using short-circuit current as a temperature-sensitive electrical parameter for converter prototype evaluation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6):3419-3429. [46] 李亚萍, 周雒维, 孙鹏菊, 等. 基于特定集电极电流下饱和压降的IGBT模块老化失效状态监测方法[J]. 电工技术学报, 2018, 33(14):3202-3212 LI Yaping, ZHOU Luowei, SUN Pengju, et al. Condition monitoring for IGBT module aging failure on VCE(on) under certain IC conditions[J]. Transactions of China Electrotechnical Society, 2018, 33(14):3202-3212 [47] PEDERSEN K B, KRISTENSEN P K, PEDERSEN P, et al. Degradation assessment in IGBT modules using four-point probing approach[J]. IEEE Transactions on Power Electronics, 2015, 30(5):2405-2412. [48] WEI K X, DU M X, XIE L L, et al. Study of bonding wire failure effects on external measurable signals of IGBT module[J]. IEEE Transactions on Device and Materials Reliability, 2014, 14(1):83-89. [49] SMET V, FOREST F, HUSELSTEIN J J, et al. Evaluation of Vce monitoring as a real-time method to estimate aging of bond wire-IGBT modules stressed by power cycling[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7):2760-2770. [50] ZHOU L W, ZHOU S Q, XU M W. Investigation of gate voltage oscillations in an IGBT module after partial bond wires lift-off[J]. Microelectronics Reliability, 2013, 53(2):282-287. [51] PENG Y Z, ZHOU L W, DU X, et al. Junction temperature estimation of IGBT module via a bond wires lift-off independent parameter VgE-np[J]. IET Power Electronics, 2018, 11(2):320-328. [52] 孔梅娟, 李志刚. IGBT模块通态电阻与键合线故障关系研究[J]. 电力电子技术, 2017, 51(11):91-93 KONG Meijuan, LI Zhigang. Study on the relationship between the on-resistance and the bonding-wire lift of the IGBT module[J]. Power Electronics, 2017, 51(11):91-93 [53] BABEL A S, MUETZE A, SEEBACHER R R, et al. Inverter device nonlinearity characterization technique for use in a motor drive system[J]. IEEE Transactions on Industry Applications, 2015, 51(3):2331-2339. [54] WANG Z, TIAN B, QIAO W, et al. Real-time aging monitoring for IGBT modules using case temperature[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2):1168-1178. [55] 陈民铀, 高兵, 杨帆, 等. 基于电-热-机械应力多物理场的IGBT焊料层健康状态研究[J]. 电工技术学报, 2015, 30(20):252-260 CHEN Minyou, GAO Bing, YANG Fan, et al. Healthy evaluation on IGBT solder based on electro-thermal-mechanical analysis[J]. Transactions of China Electrotechnical Society, 2015, 30(20):252-260 [56] GAO B, YANG F, CHEN M, et al. A temperature gradient based condition estimation method for IGBT module[J]. IEEE Transactions on Power Electronics, 2016, 32(3):1-10. [57] XIANG D, RAN L, TAVNER P, et al. Monitoring solder fatigue in a power module using case-above-ambient temperature rise[J]. IEEE Transactions on Industry Applications, 2012, 47(6):2578-2591. [58] 陈一高, 陈民铀, 高兵, 等. 基于瞬态热阻的IGBT焊料层失效分析[J]. 中国电机工程学报, 2018, 38(10):3059-3067,3157 CHEN Yigao, CHEN Minyou, GAO Bing, et al. Evaluation of solder failure of an IGBT module based on transient thermal impedance[J]. Proceedings of the CSEE, 2018, 38(10):3059-3067,3157
|