中国电力 ›› 2015, Vol. 48 ›› Issue (6): 1-7.DOI: 10.11930.2015.6.1

• 风光储专栏 •    下一篇

基于猫鼠种群算法的分散式风力发电优化配置

杨珺1,张闯2,黄旭3,孙秋野1   

  1. 1. 东北大学 信息科学与工程学院,辽宁 沈阳 110819;
    2. 江苏省电力公司电力经济技术研究院,江苏 南京 210000;
    3. 辽宁省电力有限公司电力科学研究院,辽宁 沈阳 110006
  • 收稿日期:2015-03-28 出版日期:2015-06-25 发布日期:2015-11-26
  • 作者简介:杨珺(1976—),男,辽宁沈阳人,副教授,主要从事新能源发电及并网优化,智能控制与系统预测等方面的研究。E-mail: yangjun@mail.neu.edu.cn
  • 基金资助:
    This work is supported by National Natural Science Foundation of China(61104099,61374124); Fundamental Research Funds for the Central Universities (N130404008,N130104001); Science and Technology Project of State Grid Corporation of China (DKYKJ [2012]001-2).

Optimal Configuration for Distributed Wind Generation Based on Cat and Mouse Swarm Algorithm

YANG Jun1, ZHANG Chuang2, HUANG Xu3, SUN Qiuye1   

  1. 1.School of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
    2. Jiangsu Electric Power Company Economic Research Institute, Nanjing 210000, China,
    3. Electric Power Research Institute of Liaoning Electric Power Company Limited, Shenyang 110006, China
  • Received:2015-03-28 Online:2015-06-25 Published:2015-11-26
  • Contact: 国家自然科学基金资助项目(61104099,61374124),中央高校基本科研业务费专项基金(N130404008,N130104001),国家电网公司科技资助项目(DKYKJ[2012]001-2)

摘要: 发展智能电网是能源可持续发展的重要支撑,而以分散式发电的方式利用可再生能源发电是智能电网的一大特点。从经济、技术和环境等因素出发,将人工鱼群算法和猫群算法相结合,提出了一种新型的优化方法——猫鼠种群算法。研究了分散式风力发电的优化配置问题,包括选择分散式风力发电机的位置和确定风力发电机的容量。猫鼠种群算法同鱼群算法一样,具有参数不敏感性,解决了优化算法参数较多带来的困扰。最后本文以IEEE14节点系统为例,验证了算法的有效性和优越性。

关键词: 分散式发电, 风力发电, 优化配置, 猫鼠种群算法

Abstract: Smart grid is an important basis for energy sustainable development. One of important characteristic of smart grid is distributed renewable power generation. With consideration of economy, technology and environment factors, a new optimal algorithm, cat and mouse swarm algorithm, is presented based on flocking algorithm and cat swarm algorithm. Optimal configuration of distributed wind power generation is studied by using proposed algorithm, including wind turbine location and capacity selection. The proposed algorithm is insensitive to parameters, which is robust during optimization. Simulation results based on IEEE14 node system show the validity and superiority of the proposed algorithm.

Key words: dispersed generation, wind generation, optimal configuration, cat and mouse swarm algorithm

中图分类号: