中国电力 ›› 2017, Vol. 50 ›› Issue (3): 147-153.DOI: 10.11930/j.issn.1004-9649.2017.03.147.07

• 新能源 • 上一篇    下一篇

含分布式电源的配电网优化研究

张世翔1, 邵慧壮2   

  1. 1. 上海电力学院,上海 200090;
    2. 国网河南省电力公司濮阳供电公司,河南 濮阳 457000
  • 收稿日期:2016-12-24 出版日期:2017-03-20 发布日期:2017-03-17
  • 作者简介:张世翔(1979—),男,安徽巢湖人,博士后,教授,从事能源经济与管理,能源互联网、智能电网与新能源等方面研究。E-mail:zsxwh@126.com
  • 基金资助:
    中国工程院咨询研究重点项目(2016-XZ-29); 上海市教委科研创新重点项目(14ZS146); 上海市哲学社会科学规划课题资助项目(2013BGL016); 上海高校人文社会科学重点研究基地建设项目(WKJD15004)

Optimization Research of Distribution Network Considering Distributed Generation

ZHANG Shixiang1, SHAO Huizhuang2   

  1. 1. Shanghai University of Electric Power, Shanghai 200090, China;
    2. Puyang Power Supply Company of State Grid Henan Electric Power Company, Puyang 457000, China
  • Received:2016-12-24 Online:2017-03-20 Published:2017-03-17
  • Supported by:
    This work is supported by Key Consultation Project of Chinese Academy of Engineering (No.2016-XZ-29); Key Innovation Program of Shanghai Municipal Education Commission (No.14ZS146); Shanghai Social Science Planning Program (No.2013BGL016); Key Research Construction Project for Humanities and Social Sciences in Universities of Shanghai (No.WKJD15004)

摘要: 随着中国环境问题的愈发凸显和节能减排形式的越来越严峻,传统火力发电高污染、高耗能的问题暴露地越来越明显,与此同时,以风电、光伏为主的分布式电源(distributed generation,DG)发电过程绿色无污染,且安装灵活,可直接接入中低压配电网,很好地解决了传统大电网面临的弊端,DG合理接入配电网也可以带来很好的经济性。本次研究建立了涵盖DG投资商、电网公司、用户角度的多目标模型,引入了NSGGA-2改进算法,最后在IEEE33节点算例的基础上,针对DG位置、容量、类型进行了多组仿真试验验证了所提算法的可行性,为决策者提供了多种模型下的最优配置方案。

关键词: 分布式电源, 配电网, NSGA-2, 多目标优化, IEEE33, 最优配置

Abstract: As China’s environmental problems and energy savings become more prominent and more severe, the high pollution, high energy consumption problem of traditional thermal power is more and more obvious. Meanwhile, non-polluting green power generation process and flexible installation make distributed generation (DG) a good solution to those traditional problems. Proper DG access can also bring considerable economic value to the grid. A multi-objective optimization model including investors, state grid and user is established. With NSGA-2 algorithm, several experiments are conducted on IEEE 33 network. The experiments are focused on different configurations of DG location, capacity and types to confirm the accuracy of proposed algorithm. It provides optimized configuration scheme under different environments for decision makers.

Key words: DG, distribution network, NSGA-2, multi-objective optimization, IEEE33, optimized configuration

中图分类号: