中国电力 ›› 2017, Vol. 50 ›› Issue (2): 181-184.DOI: 10.11930/j.issn.1004-9649.2017.02.181.04

• 电网 • 上一篇    

基于曲线相似性分析的窃电用户判断

吴迪   

  1. 深圳供电局有限公司,广东 深圳 518000
  • 收稿日期:2016-10-19 出版日期:2017-02-20 发布日期:2017-02-22
  • 作者简介:吴迪(1987—),女,甘肃定西人,硕士,中级经济师,从事线损管理工作。E-mail:530164778@qq.com

Electricity Theft Identification Method Based on Curve Similarity

WU Di   

  1. Shenzhen Power Supply Company, Shenzhen 518000, China
  • Received:2016-10-19 Online:2017-02-20 Published:2017-02-22

摘要: 随着中国供电事业的迅猛发展,窃电问题日益突出,严重影响了供电企业的稳定发展。针对窃电用户的线损特点,采用时域和频域的曲线相似性分析方法,通过判断用户负荷曲线与异常馈线线损曲线之间的相似性来识别窃电行为。在时域中采用了欧氏距离、余弦距离和街区距离直接计算2种曲线的相似性,在频域中则采用自相关法、修正协方差法和Burg法先获得2种曲线的功率谱,再计算2种功率谱的相似性。实例应用表明:该方法能够迅速缩小窃电用户排查范围,准确锁定窃电用户,提升反窃电工作成效。

关键词: 电网, 窃电, 线损, 负荷曲线, 距离, 功率谱估计

Abstract: With rapid development of China’s power utilities, power theft becomes more and more prominent, which seriously affects stable development of power supply enterprise. According to the line-loss characteristic of electricity stealing, an electricity theft identification method is presented based on similarity between user load profile and irregular line loss curve. Two methods are proposed to compute similarity of two curves in both time and frequency domain. In time domain, similarity is measured by Euclidian distance, Cosine distance and Block distance. In frequency domain, power spectrums of two curves are calculated and compared using autocorrelation method, modified covariance method and Burg method. Application results show that proposed methods can narrow electricity theft detection range and identify target accurately.

Key words: power grid, electricity theft, line loss, load profile, distance, power spectrum estimation

中图分类号: