中国电力 ›› 2025, Vol. 58 ›› Issue (6): 67-75.DOI: 10.11930/j.issn.1004-9649.202406062
• 基于数据驱动的电力系统安全稳定分析与控制 • 上一篇 下一篇
肖湘奇1,2(), 邹晟1,2, 贺星1,2, 肖建红1,2, 马斌1,2
收稿日期:
2024-06-18
发布日期:
2025-06-30
出版日期:
2025-06-28
作者简介:
基金资助:
XIAO Xiangqi1,2(), ZOU Sheng1,2, HE Xing1,2, XIAO Jianhong1,2, MA Bin1,2
Received:
2024-06-18
Online:
2025-06-30
Published:
2025-06-28
Supported by:
摘要:
针对现有光储系统中多储能变流器功率分配问题,提出基于模糊控制算法的光储系统优化输出功率策略。依据储能变流器传输功率与电池健康特征量之间的关系,制定相应的模糊集合和隶属度函数;利用模糊控制算法,在储能单元温度低于或高于所设置的预警温度时,结合储能单元老化规律及储能单元健康因子系数,优化各储能单元功率分配,有效减少储能单元能量损耗及延长电池寿命。仿真结果表明,与传统的控制策略相比,在消耗相同的储能容量下,所提策略可减缓电池老化速度19.1%,并有效减缓储能单元温度的快速升高和能量损耗,整体上提高了光储系统安全和经济性。
肖湘奇, 邹晟, 贺星, 肖建红, 马斌. 基于模糊控制算法的光储系统输出功率优化[J]. 中国电力, 2025, 58(6): 67-75.
XIAO Xiangqi, ZOU Sheng, HE Xing, XIAO Jianhong, MA Bin. Output Power Optimization of Photovoltaic and Energy Storage Hybrid System Based on Fuzzy Control Algorithm[J]. Electric Power, 2025, 58(6): 67-75.
图 5 优化光储系统并网功率控制策略示意
Fig.5 Schematic diagram of the optimized grid-connected power control strategy for the photovoltaic and energy storage hybrid system
参数 | 数值 | 参数 | 数值 | |||
储能直流侧电压/V | 800 | PCS额定运行功率/kW | 15 | |||
电网电压/V | 380 | PCS转换功率下限/kW | 6 | |||
储能交流侧电感/mH | 21 | SOH1/% | 95 | |||
SOH2/% | 90 | SOH3/% | 85 |
表 1 部分仿真参数
Table 1 Partial simulation parameters
参数 | 数值 | 参数 | 数值 | |||
储能直流侧电压/V | 800 | PCS额定运行功率/kW | 15 | |||
电网电压/V | 380 | PCS转换功率下限/kW | 6 | |||
储能交流侧电感/mH | 21 | SOH1/% | 95 | |||
SOH2/% | 90 | SOH3/% | 85 |
控 制 策 略 | 场 景 | Pref/ kW | THD/ % | Pbatt1/ kW | Pbatt2/ kW | Pbatt3/ kW | Idc1/ A | Idc2/ A | Idc3/ A | 消耗电池额 定容量160% 下的老化循 环圈数 | ||||||||||
本 文 控 制 策 略 | 1 | 15 | 2.50 | 7.70 | 7.30 | 0.0 | 18.0 | 17.0 | 0.0 | |||||||||||
2 | 18 | 2.30 | 9.30 | 8.70 | 0.0 | 21.7 | 20.3 | 0.0 | ||||||||||||
3 | 23 | 2.54 | 8.13 | 7.67 | 7.2 | 19.2 | 18.0 | 16.8 | ||||||||||||
4 | 30 | 2.23 | 10.60 | 10.00 | 9.4 | 24.7 | 23.3 | 21.9 | ||||||||||||
5 | 42 | 1.45 | 14.80 | 14.00 | 13.2 | 34.6 | 32.7 | 30.7 | ||||||||||||
传 统 控 制 策 略 | 1 | 15 | 1.31 | 15.00 | 0.00 | 0.0 | 35.0 | 0.0 | 0.0 | 0.862 5 | ||||||||||
2 | 18 | 1.94 | 15.00 | 3.00 | 0.0 | 35.0 | 7.0 | 0.0 | 0.808 9 | |||||||||||
3 | 23 | 1.63 | 15.00 | 8.00 | 0.0 | 35.0 | 19.0 | 0.0 | 0.813 1 | |||||||||||
4 | 30 | 1.32 | 15.00 | 15.00 | 0.0 | 35.0 | 35.0 | 0.0 | ||||||||||||
5 | 42 | 1.46 | 15.00 | 15.00 | 12.0 | 35.0 | 35.0 | 28.0 |
表 2 储能系统不同有功功率并网情况
Table 2 Grid-connected conditions of the energy storage system under different active power levels
控 制 策 略 | 场 景 | Pref/ kW | THD/ % | Pbatt1/ kW | Pbatt2/ kW | Pbatt3/ kW | Idc1/ A | Idc2/ A | Idc3/ A | 消耗电池额 定容量160% 下的老化循 环圈数 | ||||||||||
本 文 控 制 策 略 | 1 | 15 | 2.50 | 7.70 | 7.30 | 0.0 | 18.0 | 17.0 | 0.0 | |||||||||||
2 | 18 | 2.30 | 9.30 | 8.70 | 0.0 | 21.7 | 20.3 | 0.0 | ||||||||||||
3 | 23 | 2.54 | 8.13 | 7.67 | 7.2 | 19.2 | 18.0 | 16.8 | ||||||||||||
4 | 30 | 2.23 | 10.60 | 10.00 | 9.4 | 24.7 | 23.3 | 21.9 | ||||||||||||
5 | 42 | 1.45 | 14.80 | 14.00 | 13.2 | 34.6 | 32.7 | 30.7 | ||||||||||||
传 统 控 制 策 略 | 1 | 15 | 1.31 | 15.00 | 0.00 | 0.0 | 35.0 | 0.0 | 0.0 | 0.862 5 | ||||||||||
2 | 18 | 1.94 | 15.00 | 3.00 | 0.0 | 35.0 | 7.0 | 0.0 | 0.808 9 | |||||||||||
3 | 23 | 1.63 | 15.00 | 8.00 | 0.0 | 35.0 | 19.0 | 0.0 | 0.813 1 | |||||||||||
4 | 30 | 1.32 | 15.00 | 15.00 | 0.0 | 35.0 | 35.0 | 0.0 | ||||||||||||
5 | 42 | 1.46 | 15.00 | 15.00 | 12.0 | 35.0 | 35.0 | 28.0 |
名称 | 参数 | 名称 | 参数 | |||
电池类型 | LiNiMnCoO2 | 电池规格 | 2.2 mg*180(mA·h·g–1) | |||
充电截止 电压/V | 4.3 | 放电截止 电压/V | 2.5 | |||
在C/5下的标称 容量/(mA·h) | 0.4 | 电压保护 上限/V | 5 | |||
电压保护下限/V | 0.5 | 脉冲精度/ms | 1 | |||
恒温箱温度/℃ | 30 |
表 3 实验设备部分参数
Table 3 Some parameters of the experimental equipment
名称 | 参数 | 名称 | 参数 | |||
电池类型 | LiNiMnCoO2 | 电池规格 | 2.2 mg*180(mA·h·g–1) | |||
充电截止 电压/V | 4.3 | 放电截止 电压/V | 2.5 | |||
在C/5下的标称 容量/(mA·h) | 0.4 | 电压保护 上限/V | 5 | |||
电压保护下限/V | 0.5 | 脉冲精度/ms | 1 | |||
恒温箱温度/℃ | 30 |
实验组 | A类电池 充放电电 流/mA | B类电池 充放电电 流/mA | C类电池 充放电电 流/mA | 消耗相同容量 下电池最大容 量衰减/% | ||||
1 | 0.205 | 0.195 | 2.189 | |||||
2 | 0.246 | 0.234 | 2.305 | |||||
3 | 0.216 | 0.204 | 0.193 | 2.201 | ||||
4 | 0.281 | 0.267 | 0.252 | 2.377 | ||||
5 | 0.394 | 0.373 | 0.353 | 2.637 | ||||
6 | 0.400 | 2.693 | ||||||
7 | 0.400 | 0.080 | 2.166 | |||||
8 | 0.400 | 0.217 | 2.464 | |||||
9 | 0.400 | 0.400 | 2.693 | |||||
10 | 0.400 | 0.400 | 0.320 | 2.639 |
表 4 电池充放电电流设计及实验结果
Table 4 Design and experimental results of battery charging and discharging current
实验组 | A类电池 充放电电 流/mA | B类电池 充放电电 流/mA | C类电池 充放电电 流/mA | 消耗相同容量 下电池最大容 量衰减/% | ||||
1 | 0.205 | 0.195 | 2.189 | |||||
2 | 0.246 | 0.234 | 2.305 | |||||
3 | 0.216 | 0.204 | 0.193 | 2.201 | ||||
4 | 0.281 | 0.267 | 0.252 | 2.377 | ||||
5 | 0.394 | 0.373 | 0.353 | 2.637 | ||||
6 | 0.400 | 2.693 | ||||||
7 | 0.400 | 0.080 | 2.166 | |||||
8 | 0.400 | 0.217 | 2.464 | |||||
9 | 0.400 | 0.400 | 2.693 | |||||
10 | 0.400 | 0.400 | 0.320 | 2.639 |
1 | 夏向阳, 谭欣欣, 单周平, 等. 储能电站锂离子电池本体安全关键技术及新技术应用情况[J]. 中国电力, 2024, 57 (11): 1- 17. |
XIA Xiangyang, TAN Xinxin, SHAN Zhouping, et al. Key technology and development prospect of ontology safety for lithium-ion battery storage power stations[J]. Electric Power, 2024, 57 (11): 1- 17. | |
2 | 朱沐雨, 马宏忠, 郭鹏宇, 等. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57 (6): 18- 26. |
ZHU Muyu, MA Hongzhong, GUO Pengyu, et al. State of charge estimation of energy storage battery pack under typical peak/frequency modulation conditions[J]. Electric Power, 2024, 57 (6): 18- 26. | |
3 | 和萍, 刘鑫, 宫智杰, 等. 高比例可再生能源电力系统源荷储联合调峰分层优化运行[J]. 电力系统保护与控制, 2024, 52 (18): 112- 122. |
HE Ping, LIU Xin, GONG Zhijie, et al. Hierarchical optimization operation model for joint peak-load regulation of source-load-storagein a high proportion of renewable energy power system[J]. Power System Protection and Control, 2024, 52 (18): 112- 122. | |
4 | 郑涛, 孟令昆, 强雨泽, 等. 计及SOC影响的电化学储能系统低电压穿越控制策略[J]. 电力系统保护与控制, 2024, 52 (13): 171- 178. |
ZHENG Tao, MENG Lingkun, QIANG Yuzhe, et al. Low voltage ride through control strategy for electrochemical energy storage system considering SOC influence[J]. Power System Protection and Control, 2024, 52 (13): 171- 178. | |
5 | 贺悝, 郭罗权, 谭庄熙, 等. 高比例新能源电网中储能调频死区优化设定控制策略[J]. 电力系统保护与控制, 2024, 52 (18): 65- 75. |
HE Li, GUO Luoquan, TAN Zhuangxi, et al. Improved dead zone setting of a frequency regulation strategy for energy storage with high penetration of RESs[J]. Power System Protection and Control, 2024, 52 (18): 65- 75. | |
6 | 孙建华, 王佳旭, 杜晓勇, 等. 考虑频率安全约束的高比例风电电力系统储能优化配置策略[J]. 电力科学与技术学报, 2024, 39 (5): 151- 162. |
SUN Jianhua , WANG Jiaxu, DU Xiaoyong, et al. Optimization strategy for energy storage configuration in high proportion wind power system considering frequency safety constraints[J]. Journal of Electric Power Science and Technology, 2024, 39 (5): 151- 162. | |
7 | 鲁志远, 刘世林, 范保程, 等. 含广域混合储能互联电力系统的负荷频率控制[J]. 电力科学与技术学报, 2023, 38 (6): 96- 104. |
LU Zhiyuan, LIU Shilin, FAN Baocheng, et al. Load frequency control of interconnected power system with wide-area hybrid energy storage[J]. Journal of Electric Power Science and Technology, 2023, 38 (6): 96- 104. | |
8 | 郑明才, 罗治军, 尹强等. 面向直流操作电源系统的LiFePO4电池性能优化控制研究[J]. 电源学报, 2023, 21 (1): 159- 167. |
ZHENG Mingcai, LUO Zhijun, YIN Qiang, et al. Optimal control of LiFePO4 battery performance for DC operating power systems[J]. Journal of Power Supply, 2023, 21 (1): 159- 167. | |
9 | 岳家辉, 夏向阳, 蒋戴宇, 等. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56 (7): 163- 174. |
YUE Jiahui, XIA Xiangyang, JIANG Daiyu, et al. Remaining useful life prediction and state of health estimation of lithium-ion batteries based on voltage data segment hybrid model[J]. Electric Power, 2023, 56 (7): 163- 174. | |
10 | 夏向阳, 陈贵全, 刘俊翔, 等. 储能系统直流侧纹波电流对锂离子电池寿命影响分析及优化控制策略[J]. 电工技术学报, 2023, 38 (22): 6218- 6229. |
XIA Xiangyang, CHEN Guiquan, LIU Junxiang, et al. Analysis and optimization control strategy of the impact of DC ripple current on the lifespan of lithium-ion batteries in energy storage systems[J]. Journal of Electrical Engineering, 2023, 38 (22): 6218- 6229. | |
11 | 彭昊, 罗正经, 夏向阳, 等. 储能系统多电池簇健康状态均衡控制策略[J]. 中国电力, 2024, 57 (6): 45- 52. |
PENG Hao, LUO Zhengjing, XIA Xiangyang, et al. Health state balance control strategy for multi battery clusters in energy storage systems[J]. Electric Power, 2024, 57 (6): 45- 52. | |
12 |
LI X N, GENG G C, JIANG Q Y, et al. Consensus-based multi-converter power allocation strategy in battery energy storage system[J]. Journal of Energy Storage, 2023, 60, 106623.
DOI |
13 |
LI X N, LYU L X, GENG G C, et al. Power allocation strategy for battery energy storage system based on cluster switching[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (4): 3700- 3710.
DOI |
14 | 霍俊达, 王毅. 兼顾平抑波动与储能保护的混合储能优化策略[J/OL]. 华北电力大学学报(自然科学版), 1−12[2024-08-14]. http://kns.cnki.net/kcms/detail/13.1212.tm.20240612.1415.002.html. |
HUO Junda, WANG Yi. Hybrid energy storage optimization strategy that balances smoothing fluctuations and energy storage protection[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 1−12 [2024-08-14]. http://kns.cnki.net/kcms/detail/13.1212.tm.20240612.1415.002.html. | |
15 | 林莉, 林雨露, 谭惠丹, 等. 计及SOC自恢复的混合储能平抑风电功率波动控制[J]. 电工技术学报, 2024, 39 (3): 658- 671. |
LIN Li, LIN Yulu, TAN Huidan, et al. Hybrid energy storage control with SOC self-recovery to smooth out wind power fluctuations[J]. Transactions of China Electrotechnical Society, 2024, 39 (3): 658- 671. | |
16 | 余洋, 王卜潇, 吴玉威, 等. 面向光伏平抑考虑SOH与SOC的电池储能系统功率分配方法[J]. 太阳能学报, 2024, 45 (3): 377- 388. |
YU Yang, WANG Buxiao, WU Yuwei, et al. Power allocation method for battery energy storage systems considering SOH and SOC for photovoltaic stabilization[J]. Acta Energiae Solaris Sinica, 2024, 45 (3): 377- 388. | |
17 | 李建林, 李雅欣, 刘海涛, 等. 计及储能电站安全性的功率分配策略研究[J]. 电工技术学报, 2022, 37 (23): 5976- 5986. |
LI Jianlin, LI Yaxin, LIU Haitao, et al. Research on power distribution strategy considering the safety of energy storage power station[J]. Transactions of China Electrotechnical Society, 2022, 37 (23): 5976- 5986. | |
18 |
TREMBLAY O, DESSAINT L A. Experimental validation of a battery dynamic model for EV applications[J]. World Electric Vehicle Journal, 2009, 3 (2): 289- 298.
DOI |
19 |
OMAR N, ABDEL MONEM M, FIROUZ Y, et al. Lithium iron phosphate based battery–Assessment of the aging parameters and development of cycle life model[J]. Applied Energy, 2014, 113, 1575- 1585.
DOI |
20 | Simulink: Generic battery model[EB/OL]. https://www.mathworks.com/help/releases/R2022a/physmod/sps/powersys/ref/battery.html. |
21 | 王聪聪, 叶思成, 裴春兴, 等. 电池健康状态实验与评估方法综述[J]. 电池, 2021, 51 (2): 197- 200. |
WANG Congcong, YE Sicheng, PEI Chunxing, et al. Review on battery state-of-health experiment and estimation methods[J]. Battery Bimonthly, 2021, 51 (2): 197- 200. | |
22 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55 (8): 73- 86, 95. |
LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55 (8): 73- 86, 95. | |
23 | VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147 (1/2): 269- 281. |
24 |
CHANG L J, CHEN W Y, MAO Z Y, et al. Experimental study on the effect of ambient temperature and discharge rate on the temperature field of prismatic batteries[J]. Journal of Energy Storage, 2023, 59, 106577.
DOI |
25 |
BESSMAN A, SOARES R, WALLMARK O, et al. Aging effects of AC harmonics on lithium-ion cells[J]. Journal of Energy Storage, 2019, 21, 741- 749.
DOI |
26 | BALA S, TENGNÉR T, ROSENFELD P, et al. The effect of low frequency current ripple on the performance of a Lithium Iron Phosphate (LFP) battery energy storage system[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE). Raleigh, NC, USA. IEEE, 2012: 3485−3492. |
27 |
BRAND M J, HOFMANN M H, SCHUSTER S S, et al. The influence of current ripples on the lifetime of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (11): 10438- 10445.
DOI |
28 | 张雪. 非隔离型光伏并网逆变器高效MPPT控制方法研究[D]. 广州: 华南理工大学, 2012. |
ZHANG Xue. Study of high efficiency MPPT control method of non-isolated grid-connected PV inverter[D]. Guangzhou: South China University of Technology, 2012. | |
29 | 张思章. 高频隔离型并网逆变器的研制[D]. 广州: 华南理工大学, 2012. |
ZHANG Sizhang. Development of high frequency isolated grid-connected inverter[D]. Guangzhou: South China University of Technology, 2012. | |
30 | 茆书睿, 李熹宁. 基于电池状态的储能电站集群调度策略[J]. 太阳能学报, 2023, 44 (8): 54- 61. |
MAO Shurui, LI Xining. Cluster dispatch strategy for energy storage power station based on battery state[J]. Acta Energiae Solaris Sinica, 2023, 44 (8): 54- 61. | |
31 | 朱晔, 兰贞波, 隗震, 等. 考虑碳排放成本的风光储多能互补系统优化运行研究[J]. 电力系统保护与控制, 2019, 47 (10): 127- 133. |
ZHU Ye, LAN Zhenbo, WEI Zhen, et al. Research on optimal operation of wind-PV-ES complementary system considering carbon emission cost[J]. Power System Protection and Control, 2019, 47 (10): 127- 133. |
[1] | 秦昆, 渠志江, 韩建伟, 许涛, 高峰, 迟晓莉. 基于可调虚拟阻抗的“柔-储-充”装置电池优化运行策略[J]. 中国电力, 2025, 58(6): 145-155. |
[2] | 张磊, 马晓伟, 王满亮, 陈力, 高丙团. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58(3): 8-19. |
[3] | 丰力, 张莲梅, 韦家佳, 邓长虹, 李果, 尹家悦. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57(9): 80-93. |
[4] | 刘钟淇, 刘耀, 侯金鸣. 以深远海风电为核心的能源岛能源外送经济性分析[J]. 中国电力, 2024, 57(9): 94-102. |
[5] | 李鲁阳, 陈龙翔, 陈磊, 孙大卫, 吴林林, 闵勇. 用于新能源一次调频的储能经济配置研究[J]. 中国电力, 2024, 57(7): 54-65. |
[6] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王焕昌, 张帅, 赵凤展. 计及运行灵活性的中压配电系统源-网-储协同扩展规划[J]. 中国电力, 2024, 57(7): 98-108. |
[7] | 彭昊, 罗正经, 夏向阳, 曾刚, 欧宇健, 陈贵全, 王继军, 刘立洪. 储能系统多电池簇健康状态均衡控制策略[J]. 中国电力, 2024, 57(6): 45-52. |
[8] | 曹宇, 胡鹏飞, 蔡婉琪, 王曦, 江道灼, 梁一桥. 基于MMC的超级电容与蓄电池混合储能系统及其混合同步控制策略[J]. 中国电力, 2024, 57(6): 78-89. |
[9] | 李梓萌, 王天阔, 胡鹏飞, 于彦雪, 杜翼, 蔡期塬. 基于能量枢纽的沼–风–光综合能源系统双层协同优化配置[J]. 中国电力, 2024, 57(4): 1-13. |
[10] | 张栋顺, 全恒立, 谢桦, 许志鸿, 陶雅芸, 王慧圣. 考虑碳交易机制与氢混天然气的园区综合能源系统调度策略[J]. 中国电力, 2024, 57(2): 183-193. |
[11] | 王海燕, 钱林宇. 基于NGO-VMD的混合储能功率分配策略[J]. 中国电力, 2024, 57(11): 119-128. |
[12] | 孙志媛, 彭博雅, 孙艳. 考虑多能互补的电力电量平衡优化调度策略[J]. 中国电力, 2024, 57(1): 115-122. |
[13] | 卢子敬, 李子寿, 郭相国, 杨博. 基于多目标人工蜂鸟算法的电-氢混合储能系统最优配置[J]. 中国电力, 2023, 56(7): 33-42. |
[14] | 王激华, 叶夏明, 秦如意, 应芳义, 俞佳捷. 基于指数型下垂控制的氢电混合储能微网协调控制策略研究[J]. 中国电力, 2023, 56(7): 43-53. |
[15] | 冯帅, 袁至, 李骥, 王维庆, 何山. 碳交易背景下基于综合协调储能系统的碳捕集电厂优化调度[J]. 中国电力, 2023, 56(6): 139-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||