中国电力 ›› 2025, Vol. 58 ›› Issue (3): 8-19.DOI: 10.11930/j.issn.1004-9649.202405101
• 高比例新能源接入电网的协调控制与优化运行 • 上一篇 下一篇
张磊1(
), 马晓伟2(
), 王满亮3(
), 陈力2(
), 高丙团3(
)
收稿日期:2024-05-27
录用日期:2024-08-25
发布日期:2025-03-23
出版日期:2025-03-28
作者简介:基金资助:
Lei ZHANG1(
), Xiaowei MA2(
), Manliang WANG3(
), Li CHEN2(
), Bingtuan GAO3(
)
Received:2024-05-27
Accepted:2024-08-25
Online:2025-03-23
Published:2025-03-28
Supported by:摘要:
区域电网中具备自动发电控制(automatic generation control,AGC)功能的新能源场站数量多并且不同调频机组的响应特性差异明显,加重了集中控制器的计算负担,影响区域电网频率控制效果。针对上述挑战,提出了一种基于机组动态模型和分布式一致性的互联电力系统区域内AGC机组协同控制策略,区域间根据联络线功率频率偏差进行跨区功率互济。首先,建立不同类型调频机组的调频响应功率模型。在此基础上,考虑调频控制的经济性,以有功出力变化量的二次成本函数最小为目标,兼顾各调频机组出力约束和功率平衡约束,构建功率动态分配优化模型,并证明通过合理的系数设定即可满足调频经济性最优,无须求解该优化问题。然后,提出了基于分布式一致性算法的AGC调频控制策略,实现区域内各参与机组AGC指令的整定。最后,以三区域互联电力系统为例进行仿真验证,结果表明:所提控制策略可以有效提高调频性能,降低机组的调频成本。
张磊, 马晓伟, 王满亮, 陈力, 高丙团. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58(3): 8-19.
Lei ZHANG, Xiaowei MA, Manliang WANG, Li CHEN, Bingtuan GAO. Distributed Collaborative Control Strategy for Intra-regional AGC Units in Interconnected Power System with Renewable Energy[J]. Electric Power, 2025, 58(3): 8-19.
| 区域 | 机组 | 容量/MW | 调差系数/ (MW·Hz–1) | TR/s | FH | |||||
| 1 | G1 | 20 | 12.0 | 0.35 | ||||||
| G2 | 347 | 20 | 6.5 | 0.15 | ||||||
| G3 | 812 | 20 | 10.0 | 0.32 | ||||||
| 风电场1 | 750 | 25 | ||||||||
| 2 | G4 | 790 | 20 | 9.0 | 0.30 | |||||
| G5 | 635 | 20 | 8.0 | 0.26 | ||||||
| G6 | 812 | 20 | 10.0 | 0.30 | ||||||
| G7 | 700 | 20 | 8.5 | 0.28 | ||||||
| 风电场2 | 750 | 25 | ||||||||
| 3 | G8 | 675 | 20 | 8.0 | 0.25 | |||||
| G9 | 20 | 12.0 | 0.35 | |||||||
| G10 | 312 | 20 | 6.0 | 0.20 | ||||||
| 光伏电站1 | 830 | 30 | ||||||||
| 光伏电站2 | 830 | 30 |
表 1 仿真参数
Table 1 Simulation parameters
| 区域 | 机组 | 容量/MW | 调差系数/ (MW·Hz–1) | TR/s | FH | |||||
| 1 | G1 | 20 | 12.0 | 0.35 | ||||||
| G2 | 347 | 20 | 6.5 | 0.15 | ||||||
| G3 | 812 | 20 | 10.0 | 0.32 | ||||||
| 风电场1 | 750 | 25 | ||||||||
| 2 | G4 | 790 | 20 | 9.0 | 0.30 | |||||
| G5 | 635 | 20 | 8.0 | 0.26 | ||||||
| G6 | 812 | 20 | 10.0 | 0.30 | ||||||
| G7 | 700 | 20 | 8.5 | 0.28 | ||||||
| 风电场2 | 750 | 25 | ||||||||
| 3 | G8 | 675 | 20 | 8.0 | 0.25 | |||||
| G9 | 20 | 12.0 | 0.35 | |||||||
| G10 | 312 | 20 | 6.0 | 0.20 | ||||||
| 光伏电站1 | 830 | 30 | ||||||||
| 光伏电站2 | 830 | 30 |
| AGC方法 | 负荷突增0.2 p.u. | 负荷突增0.4 p.u. | ||
| 所提策略 | ||||
| 集中式PI控制 |
表 2 不同AGC方法调频成本对比结果
Table 2 Comparison of frequency modulation cost for different AGC methods 单位:元
| AGC方法 | 负荷突增0.2 p.u. | 负荷突增0.4 p.u. | ||
| 所提策略 | ||||
| 集中式PI控制 |
| 1 | 辛保安, 李明节, 贺静波, 等. 新型电力系统安全防御体系探究[J]. 中国电机工程学报, 2023, 43 (15): 5723- 5732. |
| XIN Baoan, LI Mingjie, HE Jingbo, et al. Research on security defense system of new power system[J]. Proceedings of the CSEE, 2023, 43 (15): 5723- 5732. | |
| 2 |
朱一兵, 丛野, 张粒子, 等. 跨国跨州/跨省跨区输电定价机制及对中国专项工程定价的启示[J]. 电力系统自动化, 2024, 48 (4): 86- 100.
DOI |
|
ZHU Yibing, CONG Ye, ZHANG Lizi, et al. Transnational/interstate and trans-provincial/trans-regional transmission pricing mechanism and its enlightenment for pricing of dedicated projects in China[J]. Automation of Electric Power Systems, 2024, 48 (4): 86- 100.
DOI |
|
| 3 | 梁双, 王涉, 徐辉. 中国西电东送40年发展成效与政策建议[J]. 中国电力, 2024, 57 (11): 88- 93. |
| LIANG Shuang, WANG She, XU Hui. Development achievements and policy suggestions of China's west to east power transmission for 40 Years[J]. Electric Power, 2024, 57 (11): 88- 93. | |
| 4 | 王鹤, 丁晨, 范高锋, 等. 基于AGC调频分区控制的光储联合系统参与市场投标策略[J]. 电力系统保护与控制, 2023, 51 (2): 121- 131. |
| WANG He, DING Chen, FAN Gaofeng, et al. Photovoltaic and storage system participating in the electricity market based on AGC zoning control[J]. Power System Protection and Control, 2023, 51 (2): 121- 131. | |
| 5 | 王益斌, 陈飞雄, 邵振国, 等. 基于权重系数校正的火储两阶段联合调频方法[J]. 中国电力, 2024, 57 (3): 83- 94. |
| WANG Yibin, CHEN Feixiong, SHAO Zhenguo, et al. Two-stage frequency regulation method for energy storage coordinated with thermal power unit based on weight coefficient correction[J]. Electric Power, 2024, 57 (3): 83- 94. | |
| 6 | 徐飞阳, 薛安成, 常乃超, 等. 电力系统自动发电控制网络攻击与防御研究现状与展望[J]. 电力系统自动化, 2021, 45 (3): 3- 14. |
| XU Feiyang, XUE Ancheng, CHANG Naichao, et al. Research status and prospect of cyber attack and defense on automatic generation control in power system[J]. Automation of Electric Power Systems, 2021, 45 (3): 3- 14. | |
| 7 |
MA Y X, HU Z C, SONG Y H. Hour-ahead optimization strategy for shared energy storage of renewable energy power stations to provide frequency regulation service[J]. IEEE Transactions on Sustainable Energy, 2022, 13 (4): 2331- 2342.
DOI |
| 8 | KARANAM A N, SHAW B. A new two-degree of freedom combined PID controller for automatic generation control of a wind integrated interconnected power system[J]. Protection and Control of Modern Power Systems, 2022, 7 (2): 1- 16. |
| 9 |
LI Z W, CHENG Z P, LIANG J, et al. Distributed cooperative AGC method for new power system with heterogeneous frequency regulation resources[J]. IEEE Transactions on Power Systems, 2023, 38 (5): 4928- 4939.
DOI |
| 10 | 姚琦, 胡阳, 柳玉, 等. 考虑载荷抑制的风电场分布式自动发电控制[J]. 电工技术学报, 2022, 37 (3): 697- 706. |
| YAO Qi, HU Yang, LIU Yu, et al. Distributed automatic generation control of wind farm considering load suppression[J]. Transactions of China Electrotechnical Society, 2022, 37 (3): 697- 706. | |
| 11 | 崔童飞, 李晓明, 王硕, 等. 区域新能源电力系统AGC调频容量实时评估方法[J]. 电力系统及其自动化学报, 2023, 35 (11): 43- 49. |
| CUI Tongfei, LI Xiaoming, WANG Shuo, et al. Real-time evaluation method for AGC frequency modulation capacity of regional new energy power system[J]. Proceedings of the CSU-EPSA, 2023, 35 (11): 43- 49. | |
| 12 | 杜刚, 赵冬梅, 刘鑫. 含高比例风电系统随机备用调度研究[J]. 电网技术, 2023, 47 (4): 1378- 1387. |
| DU Gang, ZHAO Dongmei, LIU Xin. Stochastic reserve scheduling of high proportion wind power system[J]. Power System Technology, 2023, 47 (4): 1378- 1387. | |
| 13 | 杨蕾, 李胜男, 黄伟, 等. 考虑风光新能源参与二次调频的多源最优协同控制[J]. 电力系统保护与控制, 2020, 48 (19): 43- 49. |
| YANG Lei, LI Shengnan, HUANG Wei, et al. Optimal coordinated control of multi-source for AGC with participation of wind and solar energy[J]. Power System Protection and Control, 2020, 48 (19): 43- 49. | |
| 14 | ZHANG X S, TAN T, ZHOU B, et al. Adaptive distributed auction-based algorithm for optimal mileage based AGC dispatch with high participation of renewable energy[J]. International Journal of Electrical Power & Energy Systems, 2021, 124, 106371. |
| 15 | 杨冬锋, 朱军豪, 姜超, 等. 基于分布式模型预测的高比例风电系统多源协同负荷频率控制策略[J]. 电网技术, 2024, 48 (7): 2804- 2814. |
| YANG Dongfeng, ZHU Junhao, JIANG Chao, et al. Highly-proportional wind power system multi-source collaborate load frequency control strategy based on distributed model prediction[J]. Power System Technology, 2024, 48 (7): 2804- 2814. | |
| 16 | KASIS A, MONSHIZADEH N, LESTAS I. A distributed scheme for secondary frequency control with stability guarantees and optimal power allocation[J]. Systems & Control Letters, 2020, 144, 104755. |
| 17 | 李彦营, 席磊, 郭宜果, 等. 基于权重双Q-时延更新学习算法的自动发电控制[J]. 中国电机工程学报, 2022, 42 (15): 5459- 5471. |
| LI Yanying, XI Lei, GUO Yiguo, et al. Automatic generation control based on the weighted double Q-delayed update learning algorithm[J]. Proceedings of the CSEE, 2022, 42 (15): 5459- 5471. | |
| 18 | 王晶晶, 廖思阳, 姚良忠, 等. 基于一致性算法的直流受端电网分布式调频资源协同频率控制[J]. 电网技术, 2022, 46 (3): 888- 900. |
| WANG Jingjing, LIAO Siyang, YAO Liangzhong, et al. Coordinated frequency control strategy for DC receiving-end power grid with distributed frequency regulation resources using consensus algorithm[J]. Power System Technology, 2022, 46 (3): 888- 900. | |
| 19 | 李忠文, 柏宁宁, 程志平, 等. 新型电力系统中异质调频机组分布式协同AGC方法研究[J]. 电网技术, 2024, 48 (6): 2327- 2335. |
| LI Zhongwen, BAI Ningning, CHENG Zhiping, et al. Distributed collaborative AGC method for heterogeneous frequency regulation units in new power systems[J]. Power System Technology, 2024, 48 (6): 2327- 2335. | |
| 20 | 田野, 李正烁, 吴文传. 计及调节资源AGC动态特性的离散-连续时间随机前瞻经济调度[J]. 中国电机工程学报, 2024, 44 (7): 2578- 2590. |
| TIAN Ye, LI Zhengshuo, WU Wenchuan. Discrete-continuous-time stochastic look-ahead economic dispatch model considering the dynamic characteristics of AGC provided by regulating resources[J]. Proceedings of the CSEE, 2024, 44 (7): 2578- 2590. | |
| 21 |
TSYDENOV E, PROKHOROV A, WANG L. Online estimation of plant participation factors for automatic generation control in power systems with variable energy resources[J]. IEEE Transactions on Industry Applications, 2022, 58 (4): 4401- 4410.
DOI |
| 22 |
杨丽, 孙元章, 徐箭, 等. 基于在线强化学习的风电系统自适应负荷频率控制[J]. 电力系统自动化, 2020, 44 (12): 74- 83.
DOI |
|
YANG Li, SUN Yuanzhang, XU Jian, et al. Adaptive load frequency control of wind power system based on online reinforcement learning[J]. Automation of Electric Power Systems, 2020, 44 (12): 74- 83.
DOI |
|
| 23 | 梁煜东, 陈峦, 张国洲, 等. 基于深度强化学习的多能互补发电系统负荷频率控制策略[J]. 电工技术学报, 2022, 37 (7): 1768- 1779. |
| LIANG Yudong, CHEN Luan, ZHANG Guozhou, et al. Load frequency control strategy of hybrid power generation system: a deep reinforcement learning: based approach[J]. Transactions of China Electrotechnical Society, 2022, 37 (7): 1768- 1779. | |
| 24 |
MA Y X, HU Z C, SONG Y H. A reinforcement learning based coordinated but differentiated load frequency control method with heterogeneous frequency regulation resources[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 2239- 2250.
DOI |
| 25 |
LI J W, YU T, CUI H Y. A multi-agent deep reinforcement learning-based "Octopus" cooperative load frequency control for an interconnected grid with various renewable units[J]. Sustainable Energy Technologies and Assessments, 2022, 51, 101899.
DOI |
| 26 |
ZHANG X S, LI C Z, XU B, et al. Dropout deep neural network assisted transfer learning for bi-objective Pareto AGC dispatch[J]. IEEE Transactions on Power Systems, 2023, 38 (2): 1432- 1444.
DOI |
| 27 |
李卫东, 常烨骙, 陈兆庆, 等. 区域控制偏差的动态内涵[J]. 电力系统自动化, 2016, 40 (24): 146- 150, 163.
DOI |
|
LI Weidong, CHANG Yekui, CHEN Zhaoqing, et al. Dynamic contents of area control error[J]. Automation of Electric Power Systems, 2016, 40 (24): 146- 150, 163.
DOI |
|
| 28 |
刘子琦, 刘洋, 李卫东, 等. 火电机组一次调频和二次调频响应功率数据剥离方法[J]. 电力系统自动化, 2023, 47 (16): 132- 141.
DOI |
|
LIU Ziqi, LIU Yang, LI Weidong, et al. Data separation method for primary and secondary frequency regulation response power of thermal power units[J]. Automation of Electric Power Systems, 2023, 47 (16): 132- 141.
DOI |
|
| 29 |
LI J P, LI Y J, LI W B, et al. System power imbalance estimation utilizing linear component of local frequency[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 2373- 2376.
DOI |
| 30 | 闵勇, 陈磊, 刘瑞阔, 等. 电力系统频率动态中惯量与惯量响应特性辨析[J]. 中国电机工程学报, 2023, 43 (3): 855- 868. |
| MIN Yong, CHEN Lei, LIU Ruikuo, et al. Analysis on characteristics of inertia and inertial response in power system frequency dynamics[J]. Proceedings of the CSEE, 2023, 43 (3): 855- 868. |
| [1] | 张宸宇, 喻建瑜, 史明明, 刘瑞煌. 基于构网型储能的新能源微电网电压动态控制性能分析与优化[J]. 中国电力, 2025, 58(9): 115-123. |
| [2] | 周勤勇, 郝绍煦, 董武, 张立波, 张健, 贺海磊, 赵蕾蕾. “十五五”电网规划安全稳定分析关键问题[J]. 中国电力, 2025, 58(9): 138-147. |
| [3] | 吴问足, 王旭辉, 卢苑, 陈婉, 田石金, 陈娴. 基于分形理论的电力现货市场出清电价预测方法[J]. 中国电力, 2025, 58(9): 183-193. |
| [4] | 张楠, 郭庆雷, 杜哲, 王栋, 张岩, 赵靓, 蒋宇. 面向分布式新能源聚合交易的可信合约化交易模型[J]. 中国电力, 2025, 58(9): 205-218. |
| [5] | 谭玲玲, 张文龙, 康志豪, 叶平峰, 高业豪, 张玉敏. 计及惯量响应与一次调频参数优化的新能源基地构网型储能规划[J]. 中国电力, 2025, 58(7): 147-161. |
| [6] | 叶小宁, 王彩霞, 时智勇, 步雨洛, 杨超, 吴思. 国外高比例新能源消纳分析及对中国新能源可持续发展的建议[J]. 中国电力, 2025, 58(6): 137-144. |
| [7] | 秦昆, 渠志江, 韩建伟, 许涛, 高峰, 迟晓莉. 基于可调虚拟阻抗的“柔-储-充”装置电池优化运行策略[J]. 中国电力, 2025, 58(6): 145-155. |
| [8] | 叶希, 黄格超, 王曦, 王彦沣, 朱童, 何川, 张瑜祺. 基于信息间隙决策理论的受端电网电压稳定多源协同优化调度[J]. 中国电力, 2025, 58(5): 121-136. |
| [9] | 张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58(5): 144-151. |
| [10] | 汪林光, 李旭涛, 任勇, 谢小荣. 基于元启发式算法的新能源电力系统振荡稳定性最差工况搜索方法[J]. 中国电力, 2025, 58(3): 65-72. |
| [11] | 郑永乐, 韦仁博, 冯宇昂, 张艺涵, 崔世常, 武振宇, 蒋小亮, 李慧璇, 艾小猛, 方家琨. 农村新型电力系统精细化时序生产模拟方法[J]. 中国电力, 2025, 58(10): 71-81. |
| [12] | 邱忠涛, 格根敖其, 贾跃龙, 吴鹏, 张凯, 孙毅, 朱进. 新型电力系统供需协同全要素理论框架[J]. 中国电力, 2025, 58(10): 147-162. |
| [13] | 许喆, 陈晓东, 贾旭东, 陈紫颖. 考虑可再生能源配额的区域电力市场竞价行为推演[J]. 中国电力, 2025, 58(10): 225-234. |
| [14] | 邹小燕, 张瑞宏. 考虑政府干预的可再生能源与储能企业合作模式演化博弈研究[J]. 中国电力, 2025, 58(1): 153-163. |
| [15] | 王雨晴, 张敏, 王嘉兴, 李泊皓, 杨天阳, 曾鸣. 基于超模博弈的共享储能容量租赁价格决策[J]. 中国电力, 2025, 58(1): 164-173. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编