中国电力 ›› 2023, Vol. 56 ›› Issue (8): 151-156,165.DOI: 10.11930/j.issn.1004-9649.202209035

• 电网 • 上一篇    下一篇

基于小样本数据差分扩容的微电网负荷预测方法

贾巍, 黄裕春   

  1. 广东电网有限责任公司广州供电局, 广东 广州 510620
  • 收稿日期:2022-09-09 修回日期:2023-06-20 发布日期:2023-08-28
  • 作者简介:贾巍(1981—),男,通信作者,硕士,高级工程师,从事配电网规划及配网项目管理研究,E-mail:308906793@qq.com;黄裕春(1987—)女,硕士,高级工程师,从事配电网规划及配网项目管理研究,E-mail:103079720@qq.com
  • 基金资助:
    中国南方电网有限责任公司科技项目(ZHKJXM20180011)。

Method of Load Forecasting in Microgrid Based on Differential Expansion of Small Sample Data

JIA Wei, HUANG Yuchun   

  1. Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China
  • Received:2022-09-09 Revised:2023-06-20 Published:2023-08-28
  • Supported by:
    This work is supported by Science and Technology Project of China Southern Power Grid Corporation (No.GZHKJXM20180011).

摘要: 面向新能源微电网负荷预测,针对中长期负荷预测中样本数据不足导致预测精度不高的问题,提出了一种新的数据扩容方法,将原始数据样本两两差分作为新数据样本,通过设置阈值进行数据筛选,在扩充数据样本的同时保证数据的准确性,分析了基于差分运算的数据扩容方法对于负荷数据不确定性的消除效果。考虑气象、人口等影响因素,利用多元回归分析拟合各种关联因素对负荷的影响,将原始数据负荷预测模型作为对照,通过比较预测结果与实际负荷之间的误差,验证了数据扩容方法的实用性和准确性。

关键词: 负荷预测, 小样本数据, 回归分析, 微电网

Abstract: For load forecasting in renewable energy microgrid, aiming at the problem that the prediction accuracy is not high because of the lack of sample data in mid- and long-term load forecasting. This paper proposes a new data expansion method. The original data sample is used as a new data sample, and the data is filtered by setting a threshold. The data sample is expanded while ensuring the accuracy of the data, and the data based on the difference operation is analyzed. The capacity expansion method can eliminate the uncertainty of load data. Considering the influencing factors such as meteorology and population, using multiple regression analysis to fit the impact of various related factors on the load, the original data load forecasting model was used as a control, and practicality and accuracy of the expansion method in this paper was verified by comparing the error between the predicted result and the actual load.

Key words: load forecasting, small-sample data, regression analysis, microgrid