中国电力 ›› 2023, Vol. 56 ›› Issue (6): 11-17.DOI: 10.11930/j.issn.1004-9649.202210120

• 新能源电力系统稳定性分析与控制技术 • 上一篇    下一篇

基于模型预测控制的双馈风电机组调频与转子转速恢复策略

赵晶晶, 杜明, 刘帅, 李梓博, 马闻鹤   

  1. 上海电力大学 电气工程学院,上海 200082
  • 收稿日期:2022-10-28 修回日期:2023-05-04 出版日期:2023-06-28 发布日期:2023-07-04
  • 作者简介:赵晶晶(1980—),女,通信作者,博士,副教授,从事分布式发电、微电网、风电并网频率电压控制技术研究,E-mail:jjzhao_sh@163.com;杜明(1997—),男,硕士研究生,从事新能源并网控制技术研究,E-mail:173196559@qq.com;刘帅(1996—),男,硕士研究生,从事电力系统弹性技术研究,E-mail:1421228910@qq.com;李梓博(1998—),男,硕士研究生,从事配电网故障恢复技术研究,E-mail:446191937@qq.com;马闻鹤(1998—),女,硕士研究生,从事分布式发电与微电网技术研究,E-mail:Mwh12_21@163.com
  • 基金资助:
    国家自然科学基金面上资助项目(52177098)

Frequency Modulation and Rotor Speed Recovery Strategy of Doubly-Fed Induction Generator Based on Model Predictive Control

ZHAO Jingjing, DU Ming, LIU Shuai, LI Zibo, MA Wenhe   

  1. School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200082, China
  • Received:2022-10-28 Revised:2023-05-04 Online:2023-06-28 Published:2023-07-04
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.52177098).

摘要: 双馈风电机组可通过释放存储在转子中的动能参与系统调频,但转速恢复时可能引起频率的二次跌落,不利于系统频率稳定。为此,提出了一种基于模型预测控制的双馈风电机组惯量控制转子转速恢复策略。首先,基于风电机组惯量控制转速恢复时刻有功减载量对系统频率和风机转速的影响,建立了预测控制模型;其次,将降低系统频率二次跌落和恢复转子转速作为目标函数,根据系统频率实时滚动优化风机有功减载量,在抑制频率的二次跌落深度的同时兼顾转子转速恢复,以提高系统的频率稳定性;最后,在Matlab/Simulink中建立仿真模型,验证了所提控制策略的有效性。

关键词: 双馈风电机组, 频率控制, 转速恢复, 模型预测控制

Abstract: The doubly-fed induction generator (DFIG) can participate in the system frequency modulation by releasing the kinetic energy stored in the rotor, but it may cause a secondary frequency drop when the speed is recovered, which is adverse to the frequency stability of the system. Therefore, a strategy for restoring the speed of the rotor in the inertia control of DFIG based on model predictive control is presented in this paper. Firstly, based on the influence of the active power reduction on the system frequency and the rotor speed in the inertia control of DFIG when the speed is recovered, the predictive control model is established; secondly, the objective function considering the reduction of the secondary frequency drop of the system and the recovery of the rotor speed is formulated, and the active power reduction in line with the system frequency in real time is optimized, so as to suppress secondary frequency drop, ensure rotor speed recovery, and improve the stability of the system frequency; lastly, the simulation model is established on the Matlab/Simulink to verify the effectiveness of the proposed control strategy.

Key words: DFIG, frequency control, rotor speed recovery, model predictive control