[1] 张福民, 刘国鑫, 李占凯, 等. 基于二阶锥规划的交直流混合配电网优化调度[J]. 智慧电力, 2020, 48(3): 117–123 ZHANG Fumin, LIU Guoxin, LI Zhankai, et al. Optimal dispatch of AC/DC hybrid distribution network based on second-order cone programming[J]. Smart Power, 2020, 48(3): 117–123 [2] 颜伟, 杨彪, 莫静山, 等. 交直流系统主导节点选择与无功分区的概率优化方法[J]. 中国电力, 2020, 53(8): 77–84 YAN Wei, YANG Biao, MO Jingshan, et al. Probabilistic optimization method for pilot-bus selection and network partitioning of AC/DC system[J]. Electric Power, 2020, 53(8): 77–84 [3] LI B B, YANG R F, XU D D, et al. Analysis of the phase-shifted carrier modulation for modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 297–310. [4] KAKIGANO H, MIURA Y, ISE T. Low-voltage bipolar-type DC microgrid for super high quality distribution[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3066–3075. [5] MEI J, SHEN K, XIAO B L, et al. A new selective loop bias mapping phase disposition PWM with dynamic voltage balance capability for modular multilevel converter[J]. IEEE Transactions on Industrial Electronics, 2014, 61(2): 798–807. [6] 王丹, 柳依然, 梁翔, 等. 直流配电网电压等级序列研究[J]. 电力系统自动化, 2015, 39(9): 19–25,47 WANG Dan, LIU Yiran, LIANG Xiang, et al. DC distribution network voltage class series[J]. Automation of Electric Power Systems, 2015, 39(9): 19–25,47 [7] 盛万兴, 李蕊, 李跃, 等. 直流配电电压等级序列与典型网络架构初探[J]. 中国电机工程学报, 2016, 36(13): 3391–3403,3358 SHENG Wanxing, LI Rui, LI Yue, et al. A preliminary study on voltage level sequence and typical network architecture of direct current distribution network[J]. Proceedings of the CSEE, 2016, 36(13): 3391–3403,3358 [8] 段建东, 魏朝阳, 周一, 等. 未来直流配电网电压等级序列研究[J]. 中国电机工程学报, 2018, 38(12): 3538–3545,13 DUAN Jiandong, WEI Zhaoyang, ZHOU Yi, et al. Research on voltage level sequence of future DC distribution network[J]. Proceedings of the CSEE, 2018, 38(12): 3538–3545,13 [9] STARKE M, TOLBERT L M, OZPINECI B. AC vs. DC distribution: a loss comparison[C]//2008 IEEE/PES Transmission and Distribution Conference and Exposition. Chicago, IL, USA. IEEE, 2008: 1-7. [10] LAGO J, HELDWEIN M L. Operation and control-oriented modeling of a power converter for current balancing and stability improvement of DC active distribution networks[J]. IEEE Transactions on Power Electronics, 2011, 26(3): 877–885. [11] 李娜, 李朝阳, 周进, 等. 考虑投资均衡和效益性的中压配电网投资分配[J]. 中国电力, 2021, 54(12): 143–149 LI Na, LI Chaoyang, ZHOU Jin, et al. Investment allocation for medium-voltage distribution networks considering investment equilibrium and benefits[J]. Electric Power, 2021, 54(12): 143–149 [12] 赵伟, 袁至, 王维庆, 等. 基于附加电平MPC的MMC环流抑制与子模块双重均压控制[J]. 智慧电力, 2022, 50(3): 57–64 ZHAO Wei, YUAN Zhi, WANG Weiqing, et al. MMC circulating current suppression based on additional level MPC and sub-module dual voltage balancing control[J]. Smart Power, 2022, 50(3): 57–64 [13] 张雪垠, 徐永海, 李卫国, 等. 中压模块化多电平换流器降低开关频率的锯齿载波最近电平-脉宽调制方法[J]. 电工技术学报, 2020, 35(8): 1716–1727 ZHANG Xueyin, XU Yonghai, LI Weiguo, et al. A reduced-switching frequency NL-PWM method based on sawtooth carrier for medium voltage modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1716–1727 [14] ZHAO B, SONG Q, LI J G, et al. High-frequency-link DC transformer based on switched capacitor for medium-voltage DC power distribution application[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4766–4777. [15] TU Q R, XU Z, XU L. Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 2009–2017. [16] ROTHLEDER M, HELMAN U, LOUTAN C, et al. Integration of wind and solar under a 20% RPS: Stochastic simulation methods and results from California ISO studies[C]//2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA. IEEE, 2012: 1–8. [17] 管敏渊, 徐政. 模块化多电平换流器型直流输电的建模与控制[J]. 电力系统自动化, 2010, 34(19): 64–68 GUAN Minyuan, XU Zheng. Modeling and control of modular multilevel converter in HVDC transmission[J]. Automation of Electric Power Systems, 2010, 34(19): 64–68 [18] MESHRAM P M, BORGHATE V B. A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC)[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 450–462. [19] LI X Q, SONG Q, LI J G, et al. Capacitor voltage balancing control based on CPS-PWM of Modular Multilevel Converter[C]//2011 IEEE Energy Conversion Congress and Exposition. Phoenix, AZ, USA. IEEE, 2011: 4029-4034. [20] WANG Y, HU C, DING R Y, et al. A nearest level PWM method for the MMC in DC distribution grids[J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9209–9218. [21] 席嫣娜, 李笑彤, 李子明, 等. 用于城轨直流牵引系统的混合型MMC全桥子模块比例设计方法[J]. 中国电力, 2022, 55(4): 54–62 XI Yanna, LI Xiaotong, LI Ziming, et al. A design method of hybrid MMC full-bridge submodule proportion applied to DC traction power supply system for urban rail transit[J]. Electric Power, 2022, 55(4): 54–62 [22] 李磊, 陶骏, 朱明星, 等. 基于超级电容储能型MMC的控制策略[J]. 中国电力, 2020, 53(11): 15–22. LI Lei, TAO Jun, ZHU Mingxing, et al. Control Strategy for MMC Based on Super-Capacitor Energy Storage[J]. Electric Power, 2020, 53(11): 15–22. [23] 唐圣辉, 袁旭峰, 唐立, 等. 基于中压直流配电网的MMC调制策略研究[J]. 电测与仪表, 2019, 56(3): 52–57 TANG Shenghui, YUAN Xufeng, TANG Li, et al. Research on MMC modulation strategy based on medium voltage DC distribution network[J]. Electrical Measurement & Instrumentation, 2019, 56(3): 52–57 [24] 邓雪松, 欧开健, 陈鹏, 等. 基于无差拍电流控制的MMC-HVDC系统控制策略研究[J]. 电力系统保护与控制, 2014, 42(8): 34–39 DENG Xuesong, OU Kaijian, CHEN Peng, et al. Study of control strategy for MMC-HVDC system based on deadbeat current control[J]. Power System Protection and Control, 2014, 42(8): 34–39 [25] 范荻, 皇甫成, 王丰, 等. 基于MIT-LXPM改进遗传算法的配电网时间序列三相不平衡优化调控策略[J]. 智慧电力, 2022, 50(5): 9–16 FAN Di, HUANGFU Cheng,WANG Feng, et al. Optimal regulation strategy of three-phase imbalance in time series of distribution network based on MIT-LXPM improved genetic algorithm[J]. Smart Power, 2022, 50(5): 9–16
|