[1] 张博, 唐钰政, 代双寅, 等. 供用电双方满意的电压暂降治理增值服务策略[J]. 中国电力, 2020, 53(11): 50–59 ZHANG Bo, TANG Yuzheng, DAI Shuangyin, et al. Value-added service strategy of voltage sag governance for mutual satisfaction of power supply companies and power users[J]. Electric Power, 2020, 53(11): 50–59 [2] 张逸, 李为明, 林芳, 等. 基于电气特性–物理属性的工业用户电压暂降缓减策略[J]. 中国电机工程学报, 2021, 41(2): 632–642 ZHANG Yi, LI Weiming, LIN Fang, et al. Voltage sag mitigation strategy for industrial users based on process electrical characteristics-physical attribute[J]. Proceedings of the CSEE, 2021, 41(2): 632–642 [3] 郑文光, 张加岭, 邢强. 基于改进LMD方法的电压骤降检测与分析[J]. 电力系统保护与控制, 2020, 48(11): 119–127 ZHENG Wenguang, ZHANG Jialing, XING Qiang. Voltage sag detection and analysis based on a modified LMD method[J]. Power System Protection and Control, 2020, 48(11): 119–127 [4] 李飞, 郑志宇, 张昭丞, 等. 考虑电压暂降影响的交直流配网优选[J]. 电力科学与技术学报, 2020, 35(3): 120–126 LI Fei, ZHENG Zhiyu, ZHANG Zhaocheng, et al. Optimization scheme of AC/DC distribution network considering voltage sags[J]. Journal of Electric Power Science and Technology, 2020, 35(3): 120–126 [5] 胡长青, 曹爱民, 黄研利, 等. 基于实测数据的陕西电网电压暂降特征分布分析[J]. 智慧电力, 2020, 48(9): 69–74 HU Changqing, CAO Aimin, HUANG Yanli, et al. Analysis of voltage sag characteristic distribution in Shaanxi power grid based on measured data[J]. Smart Power, 2020, 48(9): 69–74 [6] CHANDRA R, KAPOOR A K. A DVR based on back-to-back stacked multicell converter with modified PSPWM[C]//2014 6 th IEEE Power India International Conference. Delhi, India. IEEE, 2014: 1–6. [7] KHAN U A, KHAN A A, CHA H, et al. Dual-buck AC–AC converter with inverting and non-inverting operations[J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9432–9443. [8] 黄永红, 徐俊俊, 刘国海, 等. 基于复合控制策略的无串联变压器型动态电压恢复器[J]. 电工技术学报, 2015, 30(12): 253–260 HUANG Yonghong, XU Junjun, LIU Guohai, et al. Transformerless dynamic voltage restorer based on compound control strategy[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 253–260 [9] 陈国栋. 动态电压恢复器电压跌落检测算法与控制技术综述[J]. 电气工程学报, 2015, 10(5): 20–33 CHEN Guodong. A survey on detection and control of dynamic voltage restorer[J]. Journal of Electrical Engineering, 2015, 10(5): 20–33 [10] 盖阔, 安群涛, 孙力. 基于多重比例谐振的动态电压恢复器谐波补偿策略[J]. 电力自动化设备, 2018, 38(1): 156–161 GAI Kuo, AN Quntao, SUN Li. Harmonic compensation strategy of dynamic voltage restorer based on multiple proportional resonant[J]. Electric Power Automation Equipment, 2018, 38(1): 156–161 [11] 瞿硕, 黄纯, 江亚群, 等. DVR电压暂降检测新方法[J]. 电工技术学报, 2013, 28(4): 234–239 QU Shuo, HUANG Chun, JIANG Yaqun, et al. A new detection method of voltage sag applied in DVR[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 234–239 [12] ROLDÁN-PÉREZ J, GARCÍA-CERRADA A, OCHOA-GIMÉNEZ M, et al. A high-performance voltage sag detection algorithm for a Dynamic Voltage Restorer[C]//2017 11 th IEEE International Conference on Compatibility, Power Electronics and Power Engineering. Cadiz, Spain. IEEE, 2017: 127–132. [13] 易桂平, 胡仁杰. 基于超级电容储能系统的动态电压恢复器研究[J]. 电力自动化设备, 2013, 33(12): 21–26 YI Guiping, HU Renjie. Dynamic voltage restorer based on super capacitor energy storage system[J]. Electric Power Automation Equipment, 2013, 33(12): 21–26 [14] 刘炳正, 王归新, 黄悦华, 等. 基于PWM开关变压器的动态电压恢复器研究[J]. 电力电子技术, 2012, 46(5): 90–92 LIU Bingzheng, WANG Guixin, HUANG Yuehua, et al. Research on dynamic voltage restorer utilizing a PWM-switched autotransformer[J]. Power Electronics, 2012, 46(5): 90–92 [15] 金楠, 康冬祎, 崔光照. 无直流储能直接AC/AC动态电压恢复器及其预测控制[J]. 电机与控制学报, 2016, 20(7): 88–94 JIN Nan, KANG Dongyi, CUI Guangzhao. Research on DC energy-storageless direct AC/AC dynamic voltage restorer and its predictive control[J]. Electric Machines and Control, 2016, 20(7): 88–94 [16] 巫付专, 侯婷婷, 韩梁, 等. 一种新型斩波AC/DC/AC变换的单相DVR[J]. 电测与仪表, 2015, 52(11): 96–100 WU Fuzhuan, HOU Tingting, HAN Liang, et al. Single-phase dynamic voltage restorer based on a new chopper AC/DC/AC conversion[J]. Electrical Measurement & Instrumentation, 2015, 52(11): 96–100 [17] 张新闻, 同向前. 电容耦合型动态电压恢复器参数建模与控制[J]. 电工技术学报, 2016, 31(6): 212–218 ZHANG Xinwen, TONG Xiangqian. Parameter modeling and control of capacitor-coupled dynamic voltage restorer[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 212–218 [18] 王艺博, 蔡国伟, 刘闯, 等. 基于双极性直接式AC/AC变换的单相动态电压恢复器[J]. 电力系统自动化, 2020, 44(6): 171–177 WANG Yibo, CAI Guowei, LIU Chuang, et al. Single-phase dynamic voltage restorer based on bipolar direct AC/AC conversion[J]. Automation of Electric Power Systems, 2020, 44(6): 171–177 [19] 王同勋, 薛禹胜, CHOI S S. 动态电压恢复器研究综述[J]. 电力系统自动化, 2007, 31(9): 101–107 WANG Tongxun, XUE Yusheng, CHOI S S. Review of dynamic voltage restorer[J]. Automation of Electric Power Systems, 2007, 31(9): 101–107 [20] 涂春鸣, 孙勇, 李珺, 等. 双PWM型动态电压恢复器的最大输出能力分析[J]. 电工技术学报, 2018, 33(21): 5015–5025 TU Chunming, SUN Yong, LI Jun, et al. Analysis of the maximum output capacity for dual-PWM dynamic voltage restorer[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5015–5025 [21] 周雪松, 张智勇, 马幼捷, 等. 动态电压恢复器检测方法与补偿策略的研究[J]. 电力电子技术, 2006, 40(3): 123–125 ZHOU Xuesong, ZHANG Zhiyong, MA Youjie, et al. Research on detection methods and compensation strategies for dynamic voltage restorer[J]. Power Electronics, 2006, 40(3): 123–125 [22] 蔡国伟, 王艺博, 郭东波, 等. 适用于电压幅值双极性调控的直接式AC/AC变换器拓扑结构[J]. 电力自动化设备, 2020, 40(7): 83–88, 95 CAI Guowei, WANG Yibo, GUO Dongbo, et al. Topology structure of direct AC/AC converter adapted to voltage amplitude bipolar regulation[J]. Electric Power Automation Equipment, 2020, 40(7): 83–88, 95 [23] 段青, 盛万兴, 郭祺, 等. 级联H桥型动态电压恢复器最优输出与能量自恢复策略研究[J]. 电网技术, 2020, 44(3): 1079–1089 DUAN Qing, SHENG Wanxing, GUO Qi, et al. Study on optimal output and energy self-recovery strategy for CHB-DVR[J]. Power System Technology, 2020, 44(3): 1079–1089 [24] 胡安平, 陶以彬, 陈嘉源, 等. 电压暂降治理措施及设备综述[J]. 电力电子技术, 2019, 53(7): 1–5,10 HU Anping, TAO Yibin, CHEN Jiayuan, et al. Review of voltage sag mitigation measures and equipments[J]. Power Electronics, 2019, 53(7): 1–5,10 [25] 孙佳莹, 徐在德, 孔令魁. 一种新型动态电压恢复器拓扑[J]. 哈尔滨理工大学学报, 2018, 23(4): 12–17 SUN Jiaying, XU Zaide, KONG Lingkui. A new topology of dynamic voltage restorer[J]. Journal of Harbin University of Science and Technology, 2018, 23(4): 12–17
|